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Abstract—Mining of spatial data is an enabling technology
for mobile services, Internet-connected cars, and the Internet of
Things. But the very distinctiveness of spatial data that drives
utility, comes at the cost of user privacy. In this work, we continue
the tradition of privacy-preserving spatial analytics, focusing not
on point or path data, but on planar spatial regions. Such data
represents the area of a user’s most frequent visitation—such
as “around home and nearby shops”. Specifically we consider
the differentially-private release of data structures that support
range queries for counting users’ spatial regions. Counting planar
regions leads to unique challenges not faced in existing work. A
user’s spatial region that straddles multiple data structure cells
can lead to duplicate counting at query time. We provably avoid
this pitfall by leveraging the Euler characteristic. To address
the increased sensitivity of range queries to spatial region data,
we calibrate privacy-preserving noise using bounded user region
size and a constrained inference that uses robust least absolute
deviations. Our novel constrained inference reduces noise and
introduces covertness by (privately) imposing consistency. We
provide a full end-to-end theoretical analysis of both differential
privacy and high-probability utility for our approach using
concentration bounds. A comprehensive experimental study on
several real-world datasets establishes practical validity.

I. INTRODUCTION

The ubiquity, quality and usability of location-based ser-

vices supports the ready availability of user tracking. Location

data sharing is used across a wide range of applications such as

traffic monitoring, facility location planning, recommendation

systems and contextual advertising. The distinctiveness of

location data, however, has led to calls for location privacy [1],

[2]: the ability to track users in aggregate without breaching

individual privacy.

Typical private spatial analytics supports point locations.

Points and trajectories, however, do not best-represent user

location in all applications. In facility-services planning, a

planner may wish to locate a new department store in a

location that overlaps with users’ regions of frequent visitation.

While hotel-booking sites collect area-level information about

customers’ preferred destinations. Such problems motivate our

focus on counting private planar bodies1. Given a collection

of privacy-sensitive planar bodies representing regions of

frequent location, we wish to support counting range queries

while preserving individual privacy. Fig. 1 illustrates this task,

on a map of metropolitan Melbourne with planar bodies repre-

senting regions of individual users’ frequent visitation. Third

parties may wish to submit any number of queries requesting

1We use body and region interchangeably to refer to a user’s spatial area.

Fig. 1. Example users’ spatial regions on a map of Melbourne.

the number of users’ areas falling in a specified query region,

e.g., for urban transport planning or retail analytics.

A leading approach for responding to range queries in

spatial data analytics is aggregation [3], [4], [5], [6], [7]. Initial

interest in aggregation was due to computational efficiency.

In the setting of planar bodies, conventional grid-partitioned

histograms cannot provide accurate results due to the duplicate
counting2 problem as a planar body may span more than one

histogram cell simultaneously. This is a problem unique to

counting planar bodies. To address this challenge, we leverage

the Euler characteristic [8] where face, edge and vertex counts

are stored separately. Such Euler Histograms [9] permit exact

counting of convex planar bodies [10].

The recently emerged strong guarantee of differential pri-

vacy [11] has attracted a number of researchers in location

privacy. Typically work studies aggregation of point and

trajectory data [12], [13], [14], [15], [16], often via histogram-

like data structures–regular or hierarchical–for controlling the

level of perturbation required for privacy.

Our goal in this paper is to address the accurate counting

of planar bodies, while providing the strong guarantee of

differential privacy. While Euler histograms provide an excel-

lent starting point in terms of utility, computational efficiency

and aggregation-based qualitative privacy, a service provider

2In the literature, the terms multiple, double or distinct counting are used
interchangeably. We suggest the term “duplicate” as it conveys that objects
are over-counted.
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may be directed by users to provide strong semantic privacy.

Differential privacy guarantees that an attacker with significant

prior knowledge and computational resources cannot deter-

mine presence or absence of a user in a set of planar bodies.
The challenge in combining the ideas of Euler histograms

and differential privacy is that the data structure’s large number

of counts require randomised perturbation. As a result, the

total noise added could be prohibitively high. Compared to

point data in which at most one cell is impacted per record,

here an object could span more than one cell, impacting many

counts. Naive solutions would therefore significantly degrade

utility. Moreover when sampled independently, perturbations

can destroy the consistency of query responses over the

resulting structure [17].
The first stage of our approach is to perturb counts of a

Euler histogram by applying noise controlled via sensitivity to

a natural bound on planar body size. Then, to re-instate con-

sistency and improve utility with no cost to privacy, we apply

constrained inference that seeks to minimally update counts

to satisfy consistency constraints. These constraints reflect

relationships between data structure counts that must exist,

but may be violated by perturbation. Under these constraints

we apply least absolute deviations (LAD), which is more

robust to outliers than ordinal regression—used previously

for constrained inference in differential privacy. By enforcing

consistency, we also “average out” previously-added noise,

thereby improving utility in certain cases. Finally, we round

counts so that query responses are integral. This final stage,

combined with consistency yields responses that preserve a

covertness property such that third party observers cannot

determine that privacy-preserving perturbation has taken place.
Our focus is on the non-interactive privacy setting, wherein

our mechanisms release privacy-preserving data structures to

third parties, with no limitation on the number of subsequent

query responses permitted.

Contributions. We deliver several main contributions:
• For the first time, we address the differentially-private

counting of planar bodies in the non-interactive setting;

• We propose differentially-private mechanisms that lever-

age the Euler characteristic (via the Euler histogram data

structure) to address the duplicate counting problem;

• We formulate novel constrained inference to reduce noise

and introduce consistency based on the robust method of

least absolute deviations; combined with rounding, this

guarantees a covertness property;

• We contribute an end-to-end theoretical analysis of both

high-probability utility and differential privacy; and

• We conduct a comprehensive experimental study on real-

world datasets, which confirms the suitability of our

approach to private range queries on spatial bodies.

II. RELATED WORK

Aggregation under range queries has emerged as a funda-

mental primitive in spatial analytics [3], [4], [5], [6], [7]. Orig-

inally motivated by statistical and computational efficiency,

aggregation is now also used for qualitative privacy.

A key challenge in aggregation is the distinct counting [3],

[4], [5], [6], [7] or multiple-count problem [10]. In contrast to

point objects, a spatial body can span more than one cell in a

partitioned space, inhibiting the ability of regular histograms

to form accurate counts. Euler histograms [9] are designed

to address this problem for convex bodies [10], by appealing

to Euler’s formula from graph theory [8]. A variation of

Euler histogram has been studied for trajectory data to address

aggregate queries on moving objects [18]. In that work, Euler

histograms were used in a distributed settings (motivating a

distributed Euler histogram), to tackle the duplicate (distinct)

entry problem rather than duplicate (distinct) counting. There

is a line of work [19], in which the CASE histogram has been

proposed as a privacy-preserving approach for trajectory data

analytics, where only counts data is utilised in a partitioned

space applying the Euler characteristic to address duplicate

counting. The authors in [19] discuss the interactive setting for

differentially private Euler histogram release, which has a pro-

hibitive limitation of the number of queries being linear in the

number of bodies. Our work has no such limitation (see [20]).

Differential privacy [11], [20] has now become a preferred

approach to data sanitisation as it provides a strong semantic

guarantee with minimal assumptions placed on the adversary’s

knowledge or capabilities. Due to its popularity, differential

privacy has been applied to many algorithms and across many

domains, such as specialized versions of spatial data indexing

structures designed with differential privacy for the purpose of

private record matching [12]; in spatial crowdsourcing to help

volunteer workers’ locations remain private [21]; in machine

learning, releasing differentially-private learned models of

SVM classifiers [22]; and for modelling human mobility from

real-world cellular network data [23].

Within the scope of aggregation, studies in the area of

point privacy have also proposed sanitization algorithms for

generating differentially private histogram and releasing ag-

gregate statistics. Many studies have looked at differential

privacy of point sets [12], [14], [13], [16], [15], [24]. They

have studied regular grid partitioning data structures and

hierarchical structures. This work for the first time addresses

the problem of differentially-private counting of planar bodies.

III. PRELIMINARIES

A. Euler Histograms

One natural but qualitative approach to privacy preservation

is spatial aggregation. We will leverage a data structure that

permits spatial aggregation for body counts. Given a grid

partitioned space, an Euler histogram data structure allocates

buckets not only for grid cells, but also for grid cell edges and

vertices. We formally define the data structure as below.

Definition 1. Consider an arbitrary partition of a subset of
R

2 into convex cells. Define F , E , V to be index sets over the
partition’s faces, edges (face intersections), and vertices (edge
intersections). Let P be a vector with components the faces,
edges and vertices indexed by F ∪E ∪V (i.e., each Pi ⊂ R

2

represents a face/edge/vertex area of the Euclidean plane); and
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Fig. 2. Two convex bodies overlapping a spatial partition and their related
counts to corresponding Euler histogram; an example query region (QR).

let vector H of non-negative integers be indexed by F ∪E ∪V
as well (representing counts per face/edge/vertex). Then we
call the data structure (P,H,F ,E ,V) an Euler histogram.

For example, an Euler histogram could be defined over a

Voronoi partition defined by a finite set of sensors [18]; or a

rectangular partition over an urban area [19] such as in Fig. 2.

Beigel and Tanin [9] first introduced to spatial databases,

the observation that the Euler characteristic [8] (including

its extensions to higher dimensions) directly applies to this

data structure. Euler’s characteristic states that the number

of convex bodies N overlapping certain query regions can be

computed exactly as

N = F−E +V , (1)

where F,E,V are the sum of face, edge, and vertex counts

in H within the given query region (QR in Fig. 2). Dupli-

cate counting due to summing face counts is corrected by

subtracting edge counts. This in turn can over-compensate,

and is corrected by adding vertex counts. This is a special

case of the Inclusion-Exclusion Principle of set theory and

applied probability. Fig. 2 illustrates the impact two planar

bodies have on a square-partition Euler histogram. Compared

to conventional histograms, with the use of extra counts for

grid cell edges and vertices, large objects spanning more

than one cell are now distinguishable from several small

objects intersecting only one cell. Applying (1) to calculate

the number of objects inside the highlighted QR of Fig. 2, we

arrive at the correct answer of N = 8−8+2 = 2.

B. Differential Privacy

We consider statistical databases on records—each repre-

senting a user’s spatial region. Randomisation is vital for

preventing an adversary from inverting a released statistic to

reconstruct the original (private) data.

Definition 2. A randomised mechanism M, is said to pre-
serve ε-differential privacy for ε > 0, if for all neighbouring
databases D, D′, which differ in exactly one record, and
measurable C ⊆ Range(M):

Pr(M(D) ∈C) ≤ exp(ε) ·Pr(M(D′) ∈C) .

Definition 2 implies that an algorithm is differentially pri-

vate if a change, addition or deletion of a record, does not

significantly affect the output distribution. Differential privacy

has become a de facto standard for privacy of input data to

statistical databases due to it being a semantic guarantee [11].

IV. PROBLEM STATEMENT

The focus of this paper is response to range queries over

spatial datasets consisting of a spatial region per user.

Problem 1. Given a set of planar bodies, our goal is to batch
process them to produce a data structure that can respond
to an unlimited number of range queries within some fixed,
bounded area: given a query region QR, we are to respond
with an approximate count of bodies overlapping that region.

For example, a range query covering the entire area in Fig. 1

might elicit a response of (exact count of) 12.

A. Evaluation Metrics

We consider four properties of mechanisms, as competing

metrics for evaluating solutions to Problem 1.

P1. Utility: We measure utility by the absolute error of query

responses relative to the true count of bodies intersecting

a given query region.

P2. Privacy: Mechanisms should achieve non-interactive dif-

ferential privacy, at some level ε , in their release of a data

structure on sensitive spatial data.

P3. Consistency: If responses to all possible queries agree

with some fixed set of bodies then we say that the

mechanism is consistent. Such a set of bodies need not

coincide with the original input bodies.

P4. Covertness: If a consistent counting mechanism’s query

responses are integer-valued, then we also call it covert.
Utility and privacy are in direct tension, for establishing

privacy typically involves reducing the influence of data on

responses. However for fixed levels of privacy, for example,

we can ask what levels of utility are possible for available

solutions to Problem 1.

If privacy-preserving perturbations are made independently

across a data structure, it is unsurprising that overlapping

queries will not necessarily result in consistent responses. This

may be undesirable for some applications that utilise multiple,

overlapping queries e.g., urban planning. We consider specific

consistency constraints which relate to the data structure

adopted. As such, the level of consistency can be benchmarked

according to the number of consistency violations suffered.

Unlike privacy, consistency is not necessarily at odds with

utility: indeed we will demonstrate how imposing consistency

can actually improve utility. Intuitively, if privacy-preservation

involves injecting independent, random perturbations to a

data structure, then consistency corresponds to a smoothness

assumption that can be used to ‘cancel out’ the deleterious

effect of perturbation. Consistency may also be applied when

a measure of ‘stealth’ is desired for a counting mechanism.

B. Assumptions

The theoretical guarantees developed in this paper leverage

four assumptions (cf. Fig. 3). Each is relatively weak, being

well motivated and satisfied in most practical settings.

A1. We assume that the space partition’s cells are all convex.

A2. We assume that query regions are convex unions of our

space partition’s cells.
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Fig. 3. A convex body with bounded diameter, on a spatial partition.

A3. We assume that all planar bodies are convex.

A4. We assume that all planar bodies are of some bounded

L2 diameter B > 0.

Our first three assumptions are sufficient for guaranteeing

correctness (perfect utility) for Euler histograms. Relaxing

these assumptions may come at the cost of utility. For example

convex query regions that are not unions of cells can exactly

count the number of bodies in the (enlarged) union of cells

intersecting the QR. And general query regions will still result

in excellent utility. Two important partition geometries satisfy

these conditions: rectangular and Voronoi partitions.

The fourth assumption controls the L1-Lipschitz smoothness

of Euler histogram counts with respect to input bodies. This

parameter—also known as the global sensitivity (cf. Defini-

tion 3)—calibrates the scale of noise added for differential

privacy. We consider a motivating example to be regions of

frequent visitation. These are necessarily bounded. With B
sufficiently large, no restriction is made on valid bodies.

Without loss of generality we assume partitions are square

of side length A > 0, divided into n rows and n columns,

yielding square cells of side length d = A/n (cf. Fig. 3).

V. ALGORITHMS AND ANALYSIS

Our approach consists of four complementary algorithms.

A. Algorithm: Euler

Algorithm 1 creates a data structure (Euler histograms cf.
Sec. III-A) to represent aggregated counts of a given set of

convex planar bodies X . The algorithm simply increments

counts for any face, edge, vertex that intersects a body.

Algorithm 1: Euler (Eu): Histogram Construction

Input : Set of planar bodies X ; partition (P,F ,E ,V)
Output: Euler histogram (H,P,F ,E ,V)

1 for i ∈ F ∪E ∪V do
2 Hi ←− 0

3 for x ∈ X do
4 for i ∈ F ∪E ∪V do
5 if x∩Pi �= /0 then
6 Hi ←− Hi +1

Privacy. Euler is qualitatively private via aggregation, but

it does not achieve any differential privacy being deterministic.

Utility. Assumptions A1–A3 guarantee the preconditions of

the following, direct results of (1).

Corollary 1. If input bodies, partition cells, and query region
are convex, and the query region is a union of cells, then
Euler’s responses to the range query via (1) are accurate.

Corollary 2. Euler is consistent (P3) and covert (P4).

Computational Complexity. As our partition has n rows and

columns, Euler’s time and space complexities are efficient at

O(|X |n2) and O(n2) respectively.

B. Algorithm: DiffPriv

Euler achieves a number of our target properties but not

differential privacy. We now introduce differential privacy

to our approach by perturbing Euler histogram counts. In

Algorithm 2, we add carefully-crafted random noise based on

the sensitivity of the histogram to input bodies. We truncate

any resulting negative counts to zero, improving utility at no

cost to privacy.

Privacy. The key step to establishing the differential privacy of

DiffPriv, is to calculate Lipschitz smoothness for Euler—the

scale of noise to be added to reduce sensitivity.

Definition 3. Let f be a deterministic, real-vector-valued
function of a database. The L1-global sensitivity (GS) of
f is given by Δ f = max

D,D′
‖ f (D)− f (D′)‖1, taken over all

neighbouring pairs of databases.

The L1-global sensitivity is a property of function f , in-

dependent of input database. For Euler histograms, the GS

measures the effect on the histogram count vector, due to

changing an input planar body related to a user’s spatial region.

Lemma 1. The L1-global sensitivity of Euler is
4.5

(⌈B
d

⌉
+ 1

)⌈B
d

⌉
, where d > 0 is the cell side length,

and B > 0 is an L2 bound on planar body diameter.

Proof: By Assumption 4 (cf. Fig. 3), the number of

cells that could intersect with a body is at most
⌈B

d

⌉
+ 1 in

one direction. Therefore the total number of cells that could

intersect a body is n2 ≤ (⌈B
d

⌉
+1

)2
. From this the number

of faces, edges and vertices of partition P intersecting with a

body can be upper-bounded as

#Faces = n2 ≤
(⌈

B
d

⌉
+1

)2

;

#Edges ≤ 2n(n−1) ; and

#Vertices ≤ (n−1)2 .

Summing these, we may bound the total number of partition

components intersected by the body as

4n(n−1)+1 ≤ 4

(⌈
B
d

⌉
+1

)⌈
B
d

⌉
+1

≤ 4.5

(⌈
B
d

⌉
+1

)⌈
B
d

⌉
.
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Since changing a single body in a database can affect impacted

histogram cell counts by one, this expression is also a bound

on global sensitivity.

DiffPriv applies the Laplace mechanism [11] to Euler: it

adds to a non-private vector-valued function f , i.i.d. Laplace-

distributed noise with centre zero and scale λ given by Δ f/ε ,

for desired privacy level ε > 0. Here, λ = ΔH/ε .

Algorithm 2: DiffPriv (DP): Laplace Perturbation

Input : Euler histogram: (P,H,F ,E ,V); privacy

ε > 0; sensitivity ΔH > 0

Output: Noisy histogram: (P,H′,F ,E ,V)
1 for i ∈ F ∪E ∪V do
2 H ′

i ←− Hi +Lap(0;ΔH/ε)
3 if H ′

i < 0 then
4 H ′

i ←− 0

Corollary 3. DiffPriv preserves ε-differential privacy.

Proof: The result follows by applying the triangle in-

equality to the odds ratio using the definition of Laplace

density, and global sensitivity [11].

Utility. DiffPriv is neither covert nor consistent, however we

can bound its utility.

Theorem 1. For confidence level δ ∈ (0,1), the counts H
output by Euler and counts H′ output by DiffPriv are uniformly
close with high probability

Pr

(
‖H′ −H‖∞ ≤ λ log

( |F|+ |E|+ |V|
δ

))
≥ 1−δ .

Proof: For convenience, we define the combined index

set H = F ∪E ∪V , noting that |H| = |F|+ |E|+ |V|. Recall

that by the definition of DiffPriv, we have that

∀i ∈H, H ′
i = Hi +Yi, Yi ∼ Lap(0;λ ) .

By the cumulative distribution function of the zero-mean

Laplace, it follows that

∀ i ∈H, Pr(|Yi| ≥ z) = exp

(−z
λ

)
,

for any scalar z > 0. By the union bound it follows that

Pr

(⋃
i∈H
{|Yi| ≥ z}

)
≤ ∑

i∈H
Pr(|Yi| ≥ z)

= |H|× exp

(−z
λ

)
.

Applying De Morgan’s law,

Prob

(⋂
i∈H
{|Yi|< z}

)
= 1−Prob

(⋃
i∈H
{|Yi| ≥ z}

)

≥ 1−|H|× exp

(−z
λ

)
� 1−δ .

Solving yields z = λ log
( |H|

δ

)
so that

Prob

(⋂
i∈H

{
|Yi|< λ log

( |H|
δ

)})
≥ 1−δ .

The result follows from H′ −H = Y, Y∼ Lap(λ ) iid.

Computational Complexity. On our n rows/column partition,

DiffPriv’s time/space complexities are efficient O(n2).

C. Algorithm: Linear Programming

After adding randomised noise with DiffPriv, we apply

constrained inference to smooth this noise, as detailed below.

We first begin by defining constrained inference, followed by

a set of consistency constraints.

1) Constrained Inference: LAD: Constrained inference

models the noisy counts output by DiffPriv as noisy ob-

servation of latent counts which are themselves related ac-

cording to a set of constraints. Inference effectively smooths

the differentially-private release, potentially improving utility

without affecting privacy. Previously ordinary least squares

(OLS) has driven constrained inference [14], [25]. Here we

propose instead to use least absolute deviation (LAD) (also

referred to as least absolute residuals, least absolute errors

and least absolute value) [26]. In contrast to OLS, LAD has

the benefit of being robust to outliers. LAD is ideal for our

setting, since its choice of minimising L1 error corresponds

to maximising the exponential of the negative L1: a Laplace

noise model, akin to maximum-likelihood estimation, match-

ing DiffPriv precisely.

Definition 4. Let H be the Euler histogram counts with a set
of defined constraints, C. Given noisy histogram counts, H′,
constrained LAD inference returns vector H′′, that satisfies the
constraints C while minimising ‖H′′ −H′‖1.

Consistency. We define three constraints C1, C2 and C3 for

Euler histograms as follows. Our consistency constraints con-

sider the relationships between face, edge and vertex counts.

Every increment to an edge count must correspond to an

increment to the counts of both incident faces as well; and

similarly for an increment to a vertex count, the corresponding

four incident edge counts must be incremented. Finally query

regions should respond with non-zero count estimates. These

represent the intuition behind our three sets of consistency

constraints. For ease of exposition, we refer to face, edge and

vertex components of H by Fi,Ei,Vi respectively. The meaning

will be apparent from context.

Constraint 1. Every edge count is less than or equal to the
minimum value of its two incident faces.

E ′′i ≤ F ′′j ∀i ∈ E ,∀ j ∈ Fi; Fi = { j ∈ F : j incident to i ∈ E}
Constraint 2. Every vertex count is less than or equal to its
four incident edges’ counts.

V ′′i ≤ E ′′j ∀i ∈ V,∀ j ∈ Ei; Ei = { j ∈ E : j incident to i ∈ V}
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Constraint 3. Every 2 by 2 grid partition should have a non-
negative count computed by Euler (1).

F ′′j +E ′′k −V ′′i ≥ 0 ∀i ∈ V,∀ j ∈ Fi,∀k ∈ Ei

where Fi = { j ∈ F : j incident to i ∈ V}
Ei = {k ∈ E : k incident to i ∈ V} .

Algorithm. We consider two constrained inference programs

for enforcing these constraints. Both minimise the change to

the histogram counts subject to the constraints. The first, LAD,

minimises counts with respect to the L1-norm.

min
H′′
‖H′′ −H′‖1 s.t. H′′ ≥ 0 Constraints C1,C2,C3

By introducing a primal variable per histogram cell count,

we can transform this to the following linear program

min
H′′,h

|H|
∑
i=1

hi (2)

s.t. H′′,h≥ 0
H ′

i −H ′′
i ≤ hi ∀i ∈H

H ′′
i −H ′

i ≤ hi ∀i ∈H
Constraints C1,C2,C3

Alternatively we could adopt the L∞-norm for minimising

the change to the histogram cell counts, as in the following

program.

min
H′′
‖H′′ −H′‖∞ s.t. H′′ ≥ 0 Constraints C1,C2,C3

And again we may transform this program to an equivalent

LP, this time introducing only a single new primal variable

min
H′′,h

h (3)

s.t. H′′,h≥ 0
H ′

i −H ′′
i ≤ h ∀i ∈H

H ′′
i −H ′

i ≤ h ∀i ∈H
Constraints C1,C2,C3

We analyse Program (3), however we recommend that in

practice Program (2) be used since it is better able to minimise

change to all cell counts, while Program (3) only minimises

the maximum error. Algorithm 3 and our experiments reflect

this recommendation.

Algorithm 3: LinProg (LP): Linear Programming

Input : Noisy Histogram: (P,H′,F ,E ,V)
Output: Consistent Histogram: (P,H′′,F ,E ,V)

1 Solve Program (2).

Privacy. Since LinProg depends only on the output of

DiffPriv, it preserves the same level of differential privacy.

Utility. We can establish high-probability utility bounds on

LinProg (L∞) that take a similar form to those proved for

DiffPriv, but via different arguments.

Theorem 2. For any confidence level δ ∈ (0,1), and for
histogram counts H′ output by DiffPriv and H′′ minimising
Program (3), we have

Pr

(
‖H′ −H′′‖∞ ≤ λ log

( |F|+ |E|+ |V|
δ

))
≥ 1−δ .

Proof: We reduce to the bound on DiffPriv, by noting

that since LinProg is minimising distance, the distance from

H′′ to H′ must be no more than H to H′. In other words

LP︷ ︸︸ ︷
‖H′ −H′′‖∞ ≤

Laplace Analysis︷ ︸︸ ︷
‖H′ −H‖∞ ≤ λ log

( |F|+ |E|+ |V|
δ

)
with the final bound holding w.p. at least 1−δ .

Computational Complexity. Linear programming interior-

point methods—also referred to as barrier algorithms—are

polynomial-time, with worst-case complexity of O(a3.5) [27],

for a, the number of variables. Therefore, for Euler histograms

the time complexity is O(n7), but in practice it is efficient as

demonstrated in our runtime experiments (cf. Sec. VI-H).

D. Algorithm: Rounding

After running LinProg, we introduce covertness via Round.

This allows the curator to hide that the data has been perturbed.

Algorithm 4: Rounding (R)

Input : Consistent Histogram: (P,H′′,F ,E ,V)
Output: Rounded Histogram: (P,H′′′,F ,E ,V)

1 for i ∈ F ∪E ∪V do
2 H ′′′

i ←− round(H ′′
i )

Privacy. Since Round depends only on differentially-private

data, it also preserves differential privacy.

Utility. The analysis of utility for Round is more straightfor-

ward than for DiffPriv and LinProg.

Lemma 2. If H′′ is the output histogram of LinProg and H′′′
is the result of Round, then ‖H′′ −H′′′‖∞ ≤ 0.5.

Lemma 3. Round is consistent when run after LinProg, and
so it is also covert.

Proof: We only need to check the consistency constraints,

as to whether Round violates any. This cannot happen, since

the smaller side of a constraint inequality rounding up must

coincide with the larger side rounding up. Similarly the larger

side rounding down must coincide with the smaller side doing

the same. Therefore, consistency is invariant to rounding.

Computational Complexity. Similar to DiffPriv, Round’s

time and space complexities are an efficient O(n2).
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(a) (b) (c) (d)

Fig. 4. Pre-processing in experimental setup: Computing the KDE and mode for a set of GPS points, then convex hull. Based on a sample of one cab’s GPS
points in San Francisco, from Cabspotting.

E. Full Theoretical Analysis

We are now able to combine the individual utility analyses

of the four stages of our approach, into an overall high-

probability bound on utility.

Corollary 4. For confidence level δ ∈ (0,1), and histogram
counts H,H′′′ output by Euler and Round respectively we have
that

‖H−H′′′‖∞ ≤ 9
(⌈B

d

⌉
+1

)⌈B
d

⌉
ε

log

(
4A2

d2 − 4A
d +1

δ

)
+0.5

holds with probability at least 1−δ .

Proof: By Theorems 1, 2, Lemma 2, triangle inequality

‖H−H′′′‖∞ ≤ ‖H−H′‖∞ +‖H′ −H′′‖∞ +‖H′′ −H′′′‖∞

≤ 2×λ log

( |F|+ |E|+ |V|
δ

)
+0.5

w.h.p., where λ = 4.5
(⌈B

d

⌉
+1

)⌈B
d

⌉
/ε . Continuing

2×λ log

( |F|+ |E|+ |V|
δ

)
+0.5

≤ 9
(⌈B

d

⌉
+1

)⌈B
d

⌉
ε

log

(
4A2

d2 − 4A
d +1

δ

)
+0.5 .

We have used the following counts, where n is the number of

rows/columns in the grid-partitioned area of volume A2:

|F| = n×n = n2 =
A2

d2
;

|E| ≤ 2n× (n−1) = 2(n2−n) = 2(|F|−
√
|F|) ;

|V| ≤ (n−1)2 = n2−2n+1 = |F|−2
√
|F|+1 ;

|F|+ |E|+ |V|
≤ |F|+2(|F|−

√
|F|)+ |F|−2

√
|F|+1

= 4|F|−4
√
|F|+1 ≤ 4A2

d2
− 4A

d
+1 .

This completes the proof.

Note, the utility bound’s error is O
(

B2

εd2 log
(

A2

δd2

))
w.h.p.

Remark 1. In order to achieve appropriate utility, we recom-
mend selecting cell size d, based on third party requirements.
The smallest QR that a third party might run on an area is
a reasonable choice for d. B can naturally be set by users or
service provider. There is little risk that B would be made too
large, as a user cannot have a very large region representing
their regular location in a short time interval. In e.g., fitness
applications, users can determine their area that they usually
do their workouts.

VI. EXPERIMENTAL STUDY

A. Datasets

We conduct extensive experiments on three real-world

datasets, that vary in terms of density and concentration of

locations. One dataset records GPS coordinates of more than

500 taxis over 30 days in the San Francisco Bay Area.

Cab mobility traces are provided through the cabspotting

project [28]. Here, cabs’ GPS points are more concentrated

on the financial district and surrounding areas (cf. Fig. 4a);

we select this area for the empirical study (cf. Fig. 4c). Our

remaining datasets are in Beijing (Microsoft Research Asia),

Geolife project Version 1.3 [29], as well as T-Drive [30]. In

Geolife 1.3, GPS trajectories were collected by 182 users,

containing 18,000 trajectories. 91.5 percent of the trajectories

are logged in a dense representation (every 1–5 seconds or

every 5–10 meters per point). GeoLife dataset gathered a

broad range of users’ outdoor movements, including not only

everyday routines e.g., going home and commuting to work but

also entertainment and sporting activities, including shopping,

sightseeing, dining, hiking, and cycling. T-Drive includes the

GPS trajectories of about 10,000 taxis within Beijing, with

a total number of points at about 15 million. Compared to

GeoLife, T-Drive has a relatively better distribution of users’

spatial regions in a partitioned space.

B. Pre-processing

We pre-process each dataset to extract convex planar bodies,

representing regions where users mostly frequent. This simu-

lates a real application where extraction might be conducted

at the end point e.g., in a fitness tracker where users can set

their workout area.
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TABLE I
EXPERIMENTAL SETTINGS. THIS TABLE SHOWS THE RANGE OF

PARAMETERS, BOLDED ARE THOSE THAT ARE VARYING.

Dataset Cell Size (d) B Area Size (A) A/d QR Size/Shape ε
T-Drive 1km 2km 20km*20km 20 1-10% 1
T-Drive 1km 2km 20km*20km 20 10-100% 1
T-Drive 0.66,1,2km 2km 20km*20km 30,20,10 1% 1
T-Drive 2km 2km 20km*20km 10 1% 0.1,0.4,0.7,1

GeoLife1.3 1km 2km 20km*20km 20 1-10% 1
GeoLife1.3 1km 2km 20km*20km 20 10-100% 1
Cabspotting 0.8km 2km 3.2km*3.2km 4 10-100% 1

• Fit a kernel density estimate (KDE) and consequently

take the mode of each user’s set of GPS points;

• Take k-nearest neighbours (k-NN) points to the mode,

e.g., for GeoLife, 8 hours corresponds to k = 5760. If the

number of GPS points are less than k we take all points;

• Check if all the points are within the defined B diameter,

otherwise discard outliers; and

• Compute the convex hull of remaining points to create

a convex planar body representing an area of frequent

visitation.

Fig. 4 demonstrates the trajectory of a cab in San Fran-

cisco 4a, taken from the Cabspotting project. In this picture (cf.
Fig. 4b), the level sets within the contour lines are convex, and

we could have picked these for our convex planar body. But

in general level sets are not convex. Our approach generates a

convex approximation. As depicted in Fig. 4c, cab GPS points

in this dataset are dense and concentrated in a specific area.

Fig. 4d illustrates the extracted convex body.

After pre-processing, we create histogram counts per each

convex body, to construct the Euler histograms as our baseline

approach and as the basis for our other algorithms.

C. Parameter Settings

Initial settings for Beijing with four parameters A (area

side length), d (cell size), B (bounded diameter), ε are 20km,

1km, 2km and 1 respectively. These settings are applied on T-

Drive, and GeoLife1.3 datasets. With regard to San Francisco,

Cabspotting dataset, area size is 3.2km×3.2km, and cell size is

0.8km but the remaining parameters are the same (cf. Table I).

Even though the literature on point data [14], [15] tends to

use only specific QR sizes, we vary the QR parameter over

the entire range of the area size to more fully evaluate our

technique. For experiments where we compare histograms, the

A/d ratio, which defines the number of grid cells for each axis,

has been kept constant for all datasets (cf. Sec. VI-H).

D. Evaluation Metrics

Apart from the varying parameter, we keep all other pa-

rameters fixed to compute the median relative error as an

empirical measure of utility, as is standard [14], [15]. We

repeat each of the experiments 100 times and compute median

relative error. The baseline approach is Euler as it provides

exact answers. Algorithms DiffPriv, LinProg, Round that are

privacy-preserving, are compared to Euler. Furthermore, we

compute the running time for each algorithm (cf. Sec. VI-H).

(a) QR Size (1-10% of Total Area). (b) QR Size (10-100% of Total Area).

(c) Various QR Shapes (smaller). (d) Various QR Shapes (larger).

Fig. 5. Median relative error per query size and shape for T-Drive dataset.

E. Varying Query Rectangle Size

In this section we compute the median relative error on all

datasets, representing diversity in terms of sparsity, density and

concentration, to demonstrate effect on accuracy. We fix every

parameter, except QR size to run a range query on various

sizes, with varying position on the partitioned map, based on

definition of a QR as a union of grid cells. Range queries are

varied from 1 to 10 and 10 to 100 percent of the total area

size of the respective city. The results for various sizes as well

as shapes of a range query are shown in Figs. 5–7. Various

parameters can affect the response of a QR, including shape of

a QR, size of a QR, whether convex bodies are sparse in the

space or dense, or if they are concentrated or not. Furthermore,

the computed global density, see Lemma 1, is different for

different dataset settings, e.g., 25 for both T-Drive and GeoLife

datasets, and 49 for Cabspotting, and this value also affects

the results. The similarity between T-Drive and Cabspotting

is that both record taxi driver movements; but a difference is

that the former is not concentrated on a specific area while

the latter is. In GeoLife1.3 the convex bodies are more dense,

having a large number of trajectories.

As depicted in Fig. 5 for the T-Drive dataset, since the

data is more evenly distributed the error is very low for

larger QR sizes (Fig. 5b), and is less than 20% for smaller

QRs (Fig. 5a). A variety of QR shapes for the smaller sizes

(Fig. 5c), and larger ones (Fig. 5d) are depicted accordingly.

For instance, 1% QR in a 20×20 partitioned-map of Beijing

city could be (1,4), (2,2), (4,1) geometries, first number

represents the number of rows and the second one shows

the number of columns. Compared to GeoLife1.3 (Fig. 6),

since trajectories are more focused on some area, the error

increases by decreasing QR size (Fig. 6a). With regard to the
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(a) QR Size (1-10% of Total Area). (b) QR Size (10-100% of Total Area).

(c) Various QR Shapes (smaller). (d) Various QR Shapes (larger).

Fig. 6. Median relative error per query size and shape for GeoLife1.3 dataset.

(a) Various QR Shapes. (b) QR Size (10-100% of Total Area).

Fig. 7. Median relative error per query size and shape for Cabspotting dataset.

Cabspotting dataset (Fig. 7), some parts of the selected area are

sparser which consequently affects the result of DiffPriv for the

QR sizes of 50% and 60%, as they contain dense and sparse

cells. However for larger QRs errors cancel each other out

due to the Euler formula (1). In all cases, LinProg and Round
reduce the errors, and provide a high level of accuracy. Since

the number of spatial partitions for the chosen area is smaller

than the other datasets, only QR sizes and shapes between

10%–100% are shown in Figs. 7a and 7b. The QR errors for

the smaller sizes 1%–9% are less than 10%.

LinProg and Round provide similar results, and as discussed

in Sec. V, the difference is the covertness property of Round.

Providing consistency, through the LinProg and Round
techniques, can improve accuracy (cf. Secs. VI-F, VI-G). For

the rest of the experiments for varying other parameters, we

focus results on T-Drive dataset, and the 1% QR size as a

conservative representative, since it has higher error.

F. Varying Area Size/Grid Cell Size Ratio

We vary the area size (A) over grid cell size (d) ratio and

compute the median relative error for QR taken as 1% of

Fig. 8. Varying area size/cell size ratio for T-Drive dataset.

Fig. 9. Varying privacy parameter for T-Drive dataset.

total area of T-Drive dataset. The area size for this dataset

is 20km× 20km. By increasing the cell size, we expect that

the accuracy improves, as demonstrated in Fig. 8. We have

fixed the QR as 1%, and varied the size of the grid cell in

a range 0.66km, 1km, and 2km to yield the ratios of 30, 20,

and 10 respectively. As shown, by increasing the grid cell

size the accuracy increases. As illustrated in Fig. 8, as we

decrease the grid cell size, the error increases due to higher

values of global sensitivity for smaller cell sizes: 49, 25, 9

are the global sensitivity (GS) values for 0.66km, 1km, and

2km cell sizes respectively. If we wish to decrease d without

incurring reduced accuracy, our theoretical results suggest that

we should also decrease B and A.

G. Varying Privacy Parameter ε

We apply a similar procedure to vary the privacy parameter

across values 0.1, 0.4, 0.7, and 1 with fixed QR of 1% of

the total area 20km× 20km, and cell size 2km. The effect of

increasing ε on accuracy is depicted in Fig. 9. Decreasing

the epsilon value from 1, will increase the scale parameter of

Laplace distribution (added noise to the counts) from 9 to 90

for ε = 0.1, and this affects the accuracy of the result. To keep

accuracy relatively constant when reducing ε , the third party

can vary other parameters.
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Fig. 10. Running time per algorithms for all datasets.

H. Running Time

Fig. 10 shows running times for all datasets of various sizes.

As discussed in Sec. VI-C, we kept the ratio A/d fixed. The

running time for all the datasets are approximately similar per

each technique. The y-axis is in seconds (log-scale) and for

the largest dataset GeoLife1.3, the total running time is ≈ 196

seconds. DiffPriv, LinProg and Round take less than 1 second

for all the datasets. Each of our algorithms are eminently
practical to implement and to run.

VII. CONCLUDING REMARKS

For the first time we propose a non-interactive differentially-

private approach to counting planar bodies representative of

users’ spatial regions e.g., a workout area, areas of customer

preference for hotel bookings, or locations of frequent visita-

tion for facility planning.

The key insight of our approach is to leverage Euler

histograms for accurate counting, cell perturbations for dif-

ferential privacy, and constrained inference smoothing to

reinstate consistency. Constrained inference often improves

utility by cancelling noisy perturbations. Our formulation

of constrained inference is a novel constrained application

of the robust method of least absolute deviations. Unlike

existing constrained inference based on ordinal regression,

our formulation precisely matches our privacy-preserving cell

perturbation distribution. By optimising for consistency while

rounding cell counts, we achieve a covertness property for

our counting mechanism: third parties cannot determine that

we have perturbed data in the first place.

A full theoretical analysis of utility and differential privacy

is complemented by experimental results on three datasets.
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