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Abstract—In this paper, a new noninvasive method is proposed
for automated estimation of fetal cardiac intervals from Doppler
Ultrasound (DUS) signal. This method is based on a novel combina-
tion of empirical mode decomposition (EMD) and hybrid support
vector machines—hidden Markov models (SVM/HMM). EMD was
used for feature extraction by decomposing the DUS signal into
different components (IMFs), one of which is linked to the cardiac
valve motions, i.e. opening (o) and closing (c) of the Aortic (A)
and Mitral (M) valves. The noninvasive fetal electrocardiogram
(fECG) was used as a reference for the segmentation of the IMF
into cardiac cycles. The hybrid SVM/HMM was then applied to
identify the cardiac events, based on the amplitude and timing of
the IMF peaks as well as the sequence of the events. The estimated
timings were verified using pulsed doppler images. Results show
that this automated method can continuously evaluate beat-to-beat
valve motion timings and identify more than 91% of total events
which is higher than previous methods. Moreover, the changes
of the cardiac intervals were analyzed for three fetal age groups:
16–29, 30–35, and 36–41 weeks. The time intervals from Q-wave
of fECG to Ac (Systolic Time Interval, STI), Ac to Mo (Isovolumic
Relaxation Time, IRT), Q-wave to Ao (Preejection Period, PEP)
and Ao to Ac (Ventricular Ejection Time, VET) were found to
change significantly (p < 0.05) across these age groups. In par-
ticular, STI, IRT, and PEP of the fetuses with 36–41 week were
significantly (p < 0.05) different from other age groups. These
findings can be used as sensitive markers for evaluating the fetal
cardiac performance.
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Fig. 1. Illustrative example of fetal cardiac intervals: STI, EDT, ICT, PEP,
VET, IRT, VFT.

Index Terms—Doppler ultrasound (DUS), empirical mode de-
composition (EMD), fetal cardiac intervals, fetal monitoring, hid-
den Markov models (HMM), hybrid SVM/HMM, support vector
machine (SVM).

I. INTRODUCTION

EACH year 1 out of 125 babies is born with congenital
heart disease (CHD) [1]. Prenatal CHD has even around

tenfold higher incidence, since a majority of these defects end in
intrauterine death [2]. Even with the improved treatment options
that are now available, every fifth child with CHD dies during
the first year of life. The mortality rate correlates closely with the
severity of the heart defect and its early clinical manifestations.
By diagnosing these conditions prenatally, it may be possible
to reduce perinatal morbidity and mortality [3]. Furthermore, it
provides tremendous medical, psychological, and economical
benefits [4].

Various antenatal fetal assessment techniques have been ad-
vocated to evaluate antepartum fetal risks. Fetal circulation is
one of the main concerns in fetal assessment which has a crucial
importance, especially the evaluation of the heart action may
give more useful information about the fetus in the antenatal pe-
riod [5]. Fetal heart rate (FHR) monitoring is commonly used for
this purpose and usually performed by using Cardiotocography
(CTG) which is a combination of Doppler ultrasound (DUS)
and measured uterine activity.

However, FHR monitoring is not enough for a thorough as-
sessment of the fetal state. There are more sensitive markers for
assessing the cardiac performance which are illustrated in Fig. 1.
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By these markers the electromechanical coupling of the heart
is evaluated, which is a fundamental and clinically significant
part of the heart physiology [6], [7]. The opening and closure
timings of the cardiac valves are the main bases for estimat-
ing these electromechanical indices [8]. Among these markers
the systolic time intervals (STI) have received considerable at-
tention as indicators of myocardial function. From a clinical
standpoint, preejection period (PEP), isovolumetric contraction
time (ICT), and left ventricular ejection time (VET) are the
most useful of STIs [8]. For example, PEP is reported as a sen-
sitive indicator of the function state of the fetal myocardium,
and it becomes prolonged early in the development of hypox-
emia and acidosis [8]. Another study suggested to use ICT as a
reliable index which can be substituted for fetal cardiac contrac-
tility [9]. Other cardiac intervals are also valuable for clinical
applications [8], [10]. Several methods have been proposed for
obtaining these intervals.

Fetal echocardiography is a technique which can visualize
different parts of the heart structure as well as the blood flow
through the valves. However, it is an expensive method and only
particular maternal and fetal conditions indicate the need for it.
Furthermore, in most cases, primary care physicians or obste-
tricians cannot appropriately analyze the heart views and only
qualified individuals can perform this highly specialized exam-
ination [11]. Due to these problems simpler and more accurate
alternative methods have been investigated.

Starting in 1980s, a number of noninvasive methods have been
proposed which mainly aimed to analyze the STI by using the
abdominal ECG and the DUS signal [12]–[15]. Band-pass filter
was used in these methods for filtering the DUS signal, after
which the cardiac events were identified manually. The major
problem with these methods is the highly variability of the DUS
signal over time as well as the poor quality of the abdominal
ECG.

In 2001, Koga et al. used the digital narrow band-pass filter
to divide the DUS signal into different frequency shift ranges.
The mitral and aortic valve motions were then identified from
the peaks in one of the filtered signals [15].

With the improved signal processing techniques and more
powerful processors over the last decade, the information con-
tent of the DUS signal has been acquired more easily. In 2001,
Shakespeare et al. proposed a method in which the DUS signal
was analyzed by the short time Fourier transform (STFT) [16].
They have shown that the high-frequency component of the
DUS signal is linked to the valve movements, while the low
frequency one is associated with the cardiac wall motion. They
also demonstrated the variability of the content of the DUS data
on a beat-to-beat basis.

A common issue which is noticed in all of these studies is the
transient nature of the DUS signal as well as the wide changes
in the signal content and spectral characteristics. Therefore, an-
other method was recently proposed which applied the mul-
tiresolution wavelet analysis to the DUS signal [17]. Wavelet
analysis is a powerful method for decomposing nonstationary
signals with variable spectral characteristic over time. Using
wavelet analysis, the DUS signal is decomposed into different
scales with resolution levels. As shown in [17], valve move-
ments were visualized as peaks in the detailed signal at level 2
wavelet decomposition. Each peak was then manually assigned

to be linked to the opening and closure of the cardiac valves.
Since the abdominal ECG is noisy and it is difficult to observe
the fetal R-wave, the extracted fECG was used, which was sep-
arated from the abdominal ECG mixture using blind source
separation with reference [18]. Furthermore, the correlation of
the cardiac cycle length (R–R interval) with the interval of the
R wave to each valve motion was investigated which has po-
tential clinical applications. This correlation was found to be
more significant for the abnormal cases and it was introduced as
a criterion for diagnosing fetal heart abnormalities. Automatic
identification of these abnormalities was investigated in their
next studies [19], [20].

Based on the current methods, fetal cardiac valve movements
can be recognized manually from a high-frequency component
of the DUS signal. However, DUS is usually corrupted by noise
and interferences and it is also sensitive to the position of the
fetus and the transducer. Therefore, current methods which are
based on manual recognition may not be practical and reliable.
Thus, an automated approach is proposed in this paper, to iden-
tify the occurrence of the cardiac events based on the pattern,
timings, and sequence of the valve and wall movements in the
DUS signal components.

In this paper, instead of STFT or the wavelet analysis, it
is proposed to use empirical mode decomposition (EMD) be-
cause it is a data-driven algorithm which is used for decom-
posing nonlinear and nonstationary time series [21]. It has been
used extensively in many different applications, such as: speech
processing, image processing, and biomedical signal process-
ing [22]–[26]. EMD has been also used for better estimation of
the FHR, using an ultrasound Doppler signal [27], [28].

Three approaches are introduced to be combined with EMD
for automated identification: hidden Markov model (HMM),
support vector machine (SVM), and hybrid SVM/HMM. The
hybrid method has been originally proposed for speech process-
ing applications [29], [30] and to our best knowledge, it has
never been used in this application. Furthermore, the changes
of the cardiac intervals from the 16th to 41th week of gestation
were evaluated in this paper.

II. METHODS

A. Subjects

Simultaneous recordings of the abdominal ECG signals and
DUS signals from 45 pregnant women at the gestational age of
16 to 41 weeks with normal single pregnancies were collected
from Tohoku University Hospital in Japan. A total of 45 record-
ings (each of 1 min. length) were sampled at 1 kHz with 16-bit
resolution. All 45 subjects were divided into three age groups for
analysis: 16–29 weeks, 30–35 weeks, and 36–41 weeks, includ-
ing 15, 12, and 18 fetuses, respectively. The study protocol was
approved by Tohoku University Institutional Review Board and
written informed consent was obtained from all subjects. The
continuous DUS data were obtained using ultrasonic transducer
5700 (fetal monitor 116, Corometrics Medical Systems, Inc.)
with 1.15 MHz signals. To compare the actual appearance of
the aortic valve’s opening and closing pattern with valve timing
events appeared in DUS signals, pulsed-wave Doppler signals
were obtained from convex 3.5 Hz of HITACHI ultrasound
scanner (ultrasonic diagnostic instrument Model EUB-525;
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HITACHI health medical corporation). The detailed procedure
for experimental setup and transabdominal ECG data collection
was described in our previous study [18]. fECG signals were
extracted from the composite abdominal signal using a method
that combines the cancelation of the mother’s ECG signal and
the blind source separation with the reference signal (BSSR)
as described in our earlier study [18] and summarized as fol-
lows.The electrical activities of the heart form a vector in the
direction of excitation which is called the heart vector [31]. The
cancelation of the maternal ECG component was performed
by subtracting the linear combination of mutually orthogonal
projections of the heart vector. After removing maternal ECG,
BSSR, which is a kind of neural network methods, extracted fe-
tal ECG signals from complex mixed signals using DUS signal
as the reference [18].

B. Empirical Mode Decomposition

One of the main methods used in this paper is EMD, which
was first introduced by Huang et al. [21]. It is a single chan-
nel method for decomposing a complicated signal into a set
of different oscillatory modes. These components are called
intrinsic-mode functions (IMF) and are zero mean, orthogonal,
and spectrally independent. The IMFs do not necessarily have
constant frequency or amplitude.

EMD is an empirical procedure which is defined only by
an algorithm and basically does not focus on any analytical
formulation for theoretical analysis. It has been used extensively
in image, speech, and audio processing applications as well as
biomedical signal processing [22]–[26], where its effectiveness
is shown.

In brief, the EMD adaptively decomposes a signal into the
IMFs through a specific algorithm which is called “sifting pro-
cedure.” Therefore for each mode, the highest frequency com-
ponent is locally extracted out of the input signal.

The sifting process is based on two constraints.
1) The number of zero crossing and extrema in the whole data

must be the same or at most differ by one.
2) At each point, the mean value of the upper and lower

envelopes which are constructed based on the local maxima and
minima is zero.

The sifting algorithm begins with identifying local maxima
and minima of the signal to be decomposed. Then, the local
maxima and minima are interpolated to find the upper and lower
envelopes, respectively. Then, the mean of these two envelopes
is subtracted from the signal. The process is repeated for the
residue until it meets a stoppage criteria which limits the size of
the standard deviation computed for two consecutive residues.
The first IMF is then obtained from the residue of the final
subtraction. The whole procedure is performed on the residue
of this IMF to find the second IMF. This process continues to
obtain all IMFs and the final residue has zero or one extrema.
More details can be found in [21].

EMD can be used for analyzing nonlinear and nonstationary
signals. It is a data driven algorithm which is able to decompose
the signal in a natural approach and does not need any prior
information about the component of interest. Therefore, in this
paper it is proposed to apply EMD to the DUS signal to decom-
pose it to the IMFs which naturally have different frequency

Fig. 2. Decomposition of the DUS signal using EMD.

bands. An example of applying EMD to the DUS data is shown
in Fig. 2. As discussed in the next sections, the peaks of the en-
velope of the first IMF provide the features for the identification
of the cardiac events.

C. Identification of Cardiac events

After applying EMD to the DUS data, according to the find-
ings in the previous research, the component with the higher
frequency band (higher than 100 Hz), i.e., the first IMF, is linked
to the valve motions [16]. On the other hand, the low-frequency
components generally correspond to the wall motions.

More precisely, the absolute value of the first IMF has a se-
quence of peaks which is associated with opening and closure
of the atrioventricular and semilunar valves. For a better assess-
ment, the envelope of that IMF was obtained using a low-pass
filter. The intervals of the cardiac cycles were also found using
R-R intervals of the fECG. Then, the filtered IMF was normal-
ized over each cardiac cycle and its peaks were detected.

In previous studies, the cardiac events were manually as-
signed to the peaks and the intervals were calculated. In this
paper, we aim to identify them automatically. To this end, each
peak should be classified as an indicator of one of the cardiac
valve timing events or none of them.

The first approach is based on HMM. It can find the events
based on the probabilistic model of their occurrence sequence
and timings. However, it was also noted that the amplitude as
well as the timing of the peaks can also be used to classify
them. Therefore, in the next approach, SVM was used as a
powerful classifier to identify the events. Because the temporal
dependence of the occurrence of events is not considered in
SVM, some extra peaks might be classified as the same event in
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Fig. 3. HMM approach block diagram.

some cardiac cycles, or a wrong order of events might be noted.
Thus, as the last approach Hybrid HMM-SVM is proposed to
be used in order to overcome the defects of SVM and HMM.
The time segment of each cardiac cycle was set by using fECG
as a reference.

1) Hidden Markov Model: HMM was developed in the
1960s [32] and has been widely used in many signal processing
applications. In contrast to the Markov model, in HMM the ob-
served symbols are emitted from some hidden states. The formal
definition of HMM is [33]:

λ = (A,B, π) (1)

A is a transition matrix, B is the emission matrix, and π is the
initial probability. Given a sequence of observations, the HMM
process is aimed to find the sequence of the hidden states that
the model went through, based on the transition probability that
each state follows another one and the emission probability of
the observations from each state. More details can be found
in [33]. If there is an available set of examples from a process,
the model can be estimated by either supervised or unsuper-
vised training. In this study, the supervised approach was used
because both input and output of the process were available as a
limited training set, for which we had prior information. In our
experiments, HMMs from statistics toolbox of MATLAB was
used.

In the first approach, HMM was applied to the filtered version
of the first IMF for recognizing valve movements. The sample
procedure for detecting a cardiac event is shown in Fig. 3. First
the peaks of the first IMF were identified based on the positive
first derivative and negative second derivative criteria. In order to
find the timing of the peaks of the IMF envelope in each cardiac
cycle, the whole sequence had to be split into different segments
using the R-R intervals of the fECG. The time difference from
the beginning of the segment to the occurrence of each peak
in that segment was then calculated, assigned to each peak and
denoted by ti . This dataset made our observation set. The hidden
states S = (s1 , s2 , . . . , sN ) were set as the opening (o) and
closure (c) of the Mitral (M) and Aortic (A) valves: Mo, Mc,
Ao, Ac, and four transitional states: T1, T2, T3, and T4, which
may occur between each pair of valve motion states.

A training set for which we had prior information about the
timings of cardiac events was then used for the HMM training
process. First, HMM was trained based on the prior information
about the training set (if each peak represented one of the valve
motion or transitional events) to provide an estimation of the
transition and emission matrices. Each element ij of the transi-
tion matrix was estimated as the number of times the event sj

followed si in the training set, divided by the total number of
si in that set. Each element bj (k) of the emission matrix was
estimated by the number of times an observation (peak timing)
was linked with the state sj in the training set, divided by the
total number of sj . Since the training set may not be rich enough
to estimate the emission probability for every time bin, the es-
timated emission matrix may contain many zeros and isolated
spikes. Therefore, the estimated emission matrix was filtered by
a low-pass filter and then normalized. This filtered matrix and
the transition matrix were then used for HMM to decode the
new data. After decoding, a matrix containing the probability of
the occurrence of each event was obtained for each peak. Then,
the event with the highest estimated probability of occurrence
among all events was assigned to each peak.

2) Support Vector Machine: In this approach, SVM was
used to classify the peaks of the IMF envelope as a sign of each
event (or no event). SVMs developed by Vapnik [34] are a pow-
erful technique for classification. Two class SVM is designed to
find a separating hyperplane with the maximum margin with the
classes. In the case of nonlinear classification, the data are first
transformed by a Kernel function into the higher dimensional
space in which it becomes linearly separable. SVM is based on
the “structural risk minimization” criteria in order to attain low
probability of generalization error [35]. More details on SVM
can be found in [36].

To construct SVMs, a kernel function K(xi ,x) must be first
selected. The choice of the kernel may affect the performance
of SVM. The radial basis function (RBF) is one of the kernels
which is used in many applications. It is defined as follows:

K(xi ,xj ) = exp

(
−‖xi − xj‖2

2σ2

)
(2)

where σ is the width of the RBF function. In this study, the RBF
kernel was used and σ was experimentally chosen to be 1.

SVMs are usually formulated for binary (two-class)problems.
However, they may be extended to multiclass problems. In this
study, the one-against-all approach was used for multiclass SVM
[36]. The classes were the same as the states in the HMM
approach.

SVM was used as the second approach for classifying the
peaks corresponding to one of the valve motion or other tran-
sitional events. For example, the procedure for recognizing an
event from the first IMF is shown in Fig. 4. In order to obtain the
features, first EMD was applied to the DUS data, the envelope
of the IMF was taken and all peaks were determined based on
the positive first derivative and negative second derivative cri-
teria. Then, the signal was broken into the segments using R-R
intervals of FECG as the reference. The time interval from the
beginning of each segment to the occurring time of each peak
in that segment and the amplitude of the peak were acquired as
the features in a matrix Y. SVM uses a training set with the
prior knowledge which assumes the events associated with the
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Fig. 4. SVM approach block diagram.

peaks. The SVM structure was developed based on the training
set. The new data were classified by SVM to find the event rep-
resented by each peak, based on the amplitude and timing of the
peaks. The SVM functions from the bioinformatics toolbox of
MATLAB were used for this study.

3) Hybrid SVM/HMM: The hybrid SVM/HMM method has
been developed for the speech recognition [29], [30]. In this pa-
per, we propose to use it for recognizing the cardiac events. It is a
combination of HMM and SVM. In order to combine SVM and
HMM, a probabilistic output of SVM must be obtained, because
HMM is based on probability models. Platt’s SVM method [37]
can provide such an output. In this method the distance of each
sample from the separating hyperplane is transformed to the
posterior probability of classifying the sample. The posterior
probability output of the SVM, P (class|input), is obtained by
calculating: P (y = +1|f(x)), where

f(x) =
l∑

i=1

αiyiK(x, xi) + b (3)

and parametric sigmoid is fitted to the output of the SVM clas-
sifier:

P (y = +1|f(x)) =
1

1 + exp(Af(x) + B)
. (4)

The parameters A and B are determined by minimizing the neg-
ative log likelihood of the training data which has the form of a
cross-entropy error function. In the hybrid SVM/HMM process,
the transition matrix and the initial probability are first deter-
mined based on the HMM training process. The SVM is also
trained using the training set. The SVM classification process
is then performed on the new data, and the emission probabil-
ity distribution is obtained by using the output of platt’s SVM
through the Bayes’ rule. Therefore, the HMM model is con-
structed. Based on this model, the most probable hidden states
are recognized through the decoding process.

For example the procedure of identifying the events from first
IMF is shown in Fig. 5. First the data were broken into segments.
Here again, the fECG was used as a reference for segmentation.
Then, the time and the amplitude of the peaks were taken into
the matrix Y. A training set for which we had prior information
was used for SVM and HMM training. The new data were

Fig. 5. Hybrid SVM-HMM approach block diagram.

then classified by the hybrid SVM/HMM method to obtain the
probability of the occurrence of the events for each peak. Then,
one of the valve motion or transitional events for which the
estimated occurrence probability was higher than other events
was assigned to each peak.

III. RESULTS

In order to evaluate the results, the timings of opening and
closure of the valves were verified by the pulsed-wave Doppler
images. It visualizes the direction and the characteristics of the
blood flow through the valves. In this technique, the aortic blood
flow Doppler waveform is recorded from the long axis of the
five-chamber view of the heart. The M-mode cursor is placed
perpendicular to the interventricular septum at the level of the
mitral valve to examine end-systole and end-diastole (closure
of atrioventricular valves).

In this paper, the total number of 45 different datasets of DUS
and corresponding fECG were used for testing the algorithm and
obtaining the timings. In order to train the hybrid SVM/HMM
classifier, the timings of the events for 30 cardiac cycles from
three different normal fetuses were determined manually based
on expertise. The algorithm was then applied to new data sets
from different fetuses to find the timings during 40 cardiac cycles
for each dataset. Fig. 6 shows an example of the high-frequency
IMF and the identified events, the fECG and the pulsed Doppler
image of the mitral valve movement for three cardiac cycles
from one of the test sets. Fig. 7 shows the result of using another
dataset with the fECG and the pulsed Doppler image of the aortic
valve movement. Fig. 8 shows estimated timings of the valve
movements from one of the test datasets. Only few event timings
were missed using this method. Table I shows the percentage of
the estimated events using all datasets from 45 fetuses and the
mean and standard error of the average estimated time intervals
over all fetuses.

The identification of the events by using the SVM, HMM,
and the hybrid SVM/HMM method were compared in Fig. 9.
By comparing the results with the pulsed Doppler image, it is
shown that the hybrid method performs better than our previous
study [17].

The estimated intervals were also analyzed by Kruskal–Wallis
test to investigate their changes during pregnancy. Data from all
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Fig. 6. (a) First IMF of the DUS signal decomposed by EMD. (b) Envelope
of the normalized IMF and the identified timings. (c) The simultaneous fECG
signal extracted from abdominal ECG signals using BSSR. (d) Pulsed wave
Doppler signal of fetal mitral valve movements annotated to show how the
specific signals are linked with opening and closing events. Mo and Mc represent
the opening and closing of mitral valve.

Fig. 7. (a) First IMF of the DUS signal decomposed by EMD. (b) Envelope
of the normalized IMF and the identified timings. (c) The simultaneous fECG
signal extracted from abdominal ECG signals using BSSR. (d) Pulsed wave
Doppler signal of fetal aortic valve movements annotated to show how the
specific signals are linked with opening and closing events. Ao and Ac represent
the opening and closing of aortic valve.

Fig. 8. Example of identified events: mitral opening and closing (Mo and Mc)
and aortic valve opening and closing (Ao and Ac).

TABLE I
MEAN ± STANDARD ERROR OF THE AVERAGE TIME INTERVALS (MSEC) OVER

45 NORMAL FETUSES AND THE ACCURACY OF IDENTIFIED EVENTS

Fig. 9. Comparison of the identification of the valve movements by using
(a) HMM, (b) SVM and (c) Hybrid SVM/HMM.
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TABLE II
RESULTS OF KRUSKAL–WALLIS TEST (P-VALUES) AND PAIRWISE COMPARISON

WITH MANN–WHITNEY—WILCOXON METHOD FOR CHANGES OF THE

ESTIMATED INTERVALS VERSUS DIFFERENT AGE GROUPS

TABLE III
RESULTS OF MULTIPLE COMPARISON BY MANN–WHITNEY–WILCOXON

METHOD (P-VALUES)

45 fetuses were divided into three different age groups: 16–
29, 30–35 and 36–41 weeks, including 15, 12, and 18 fetuses,
respectively. Table. II and III show the results of Kruskal–Wallis
test (p-values), mean and standard error of the timings for each
age group, as well as their pair-wise comparison with the Mann–
Whitney–Wilcoxon method.

Fig. 10 shows the result of comparison of the changes in PEP
with the findings of an earlier study [38].

IV. DISCUSSION

In previous studies, intervals of cardiac events have been
estimated from the DUS signal by using digital filtering, STFT,
or wavelet [8], [16], [17], [20], [39]. The DUS signal is nonlinear
and nonstationary and wide changes in the signal content and
spectral characteristics are noted on a beat-to-beat basis. The
transient nature of the DUS signal and its variability is also
shown in previous papers [16]. Therefore, it is not convincing
to use fixed parameters such as cut-off frequency for filtering
methods or wavelet parameters for the whole signal and different
subjects. Thus, EMD which is a data-driven method is more
suitable for this application. EMD has been extensively used
for decomposing nonlinear and nonstationary signals, including
the DUS signal but for estimating the FHR [27], [28], and it has
not been used for this specific application before. The results
show that by applying EMD, the component which is linked to
valve movements is practically separated, and its peaks which
correspond to the events can be discriminated.

All previous studies were based on manual identification of
the cardiac event timings. However, it is sometimes difficult to
recognize the peaks manually, especially for nonexperts. More-
over, the appearance of the particular types of events in DUS
signal strongly depends on the location of the ultrasound trans-
ducer and the fetus. Some peaks which are linked to the cardiac

Fig. 10. Changes of the mean and 95% confidence interval of PEP compared
to the results of the previous study [38].

events may not be visible in some situations or some extra peaks
may appear which may be confusing for manual recognition. It
also takes time to carefully investigate the DUS signal compo-
nent in order to recognize the events. There are some visual
errors as well as inter- and intra-observer errors when events
are recognized based on human observation. Therefore, in this
paper an automated method is proposed to recognize the events.
For this purpose, the hybrid SVM/HMM method is proposed to
be used, which has been previously employed only in speech
processing applications. Furthermore, to our best knowledge,
the combination of EMD and the hybrid SVM/HMM has never
been used before. The hybrid method classifies the peaks of the
decomposed component of the DUS signal to be linked to each
cardiac event, based on the pattern of the peaks, the timings and
the sequence of the events. The better training of the classifier
with the DUS signals with different patterns, the more powerful
automated recognition of the cardiac events. As shown in Table I,
by using this method, a higher percentage of the valve movement
events was identified, compared to the previous manual method.
The results were also compared with the pulsed Doppler images
which verified the successful identification of the events.

The estimation of the timing of cardiac events would have
been very difficult without using FECG as a reference for seg-
mentation. In this study, the position of the R-waves was used
for segmentation of the signal into different cardiac cycles.

Results of this method provide the continuous and beat-to-
beat identification of cardiac intervals, which can be used for
clinical purposes.

The relationship between the cardiac intervals and the ges-
tational age was also investigated in this study. According to
the Kruskal–Wallis test and pairwise comparison with Mann–
Whitney–Wilcoxon, STI was found to be the most changeable
with the age. On the other hand, ICT was more stable during
pregnancy as also reported by Koga [15]. According to a recent
study by Mensah–Brown et al., PEP increases with the ges-
tational age (r = 0.57, p < 0.0001) [38]. In this study, based
on the pairwise comparison, it is found that PEP slightly de-
creases (p < 0.0095) from the age group of 16–29 to 30–35,
and then significantly increases to the age of 36–41 (p = 0.0004,
Table III). As shown in Fig. 10, the estimated timings are mostly
in the same range of 95% confidence interval of the previous
study [38], especially after 30 weeks. The results of pairwise
comparison indicate that except for EDT (electromechanical
time delay) and ICT, all intervals of the age group 36–41 are
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significantly different from previous ages. For example STI
does not change significantly from the age of 16–29 to 30–35
(p = 0.4588), but after that sharply increases toward the final
weeks of pregnancy (p < 0.0001). The trend of changes in PEP
is also different in the final stage. Therefore, the final weeks of
pregnancy are the most critical.

IRT intervals were found to be longer in this study than the
timings reported in [40]. The reason may be that the age of the
fetuses analyzed in [40] was from 6 to 10 weeks of gestation, but
the average age of the fetuses we analyzed was 31 weeks. The
cardiac function changes with the development of the fetal heart.
A part of the difference may be related to this developmental
change.

A limitation of this study is that the quantitative compar-
ison with the pulsed wave Doppler image-based valve mo-
tion timings was not provided. More accurate methods such
as trans-vaginal pulsed Doppler imaging can be used in the first
trimester fetuses [40]. However, our system is compatible with
this wide-continuous monitoring of fetal heart during second
to third trimesters. More accurate quantitative comparison of
the results of the proposed method with pulsed Doppler images
requires image processing and recognition process which is be-
yond the scope of this study. The quantitative comparison can
be done in future studies.

V. CONCLUSION

DUS signal is nonlinear, nonstationary, noisy and it is vari-
able on a beat to beat basis. Therefore, using a combination
of EMD as a data-driven method for decomposing nonlinear
and nonstationary signal and hybrid SVM/HMM for automated
identification of the events improves the estimation of cardiac
intervals. Results show that 94.5% of mitral opening, 91.1% of
mitral closing, 95.3% of aortic valve opening, and 98.8% of
aortic valve closing were identified by this method, which were
higher than the manual approaches. The identified timings were
verified by pulsed doppler images.

Furthermore, the trend of changes of the cardiac intervals for
growing gestational age groups was analyzed. Results show that
STI, IRT, VET, and PEP change significantly from early to late
gestational fetuses. In particular, the intervals which correspond
to the last weeks before delivery are significantly different from
their values during the earlier weeks.
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