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Modeling electrode place discrimination in cochlear implants: Analysis
of the influence of electrode array insertion depth
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Abstract— Cochlear implants provide functional hearing to
people who are profoundly deaf or hearing impaired by
replacing the function of missing inner hair cells with an array
of stimulating electrodes. Previous studies developed a modeling
framework for predicting the optimal number of electrodes,
as well as the optimal locations and usage probabilities of
electrodes, from an information theoretic perspective. However,
the information theoretic method does not quantify the per-
formance of electrode place discrimination. In this paper, we
apply a so-called ‘extreme-learning machine’ to the cochlear
implant model to calculate the electrode classification error
rates. We also investigate the locations along the electrode
array where errors are most likely to occur. We conclude based
on our model that i) the classification error rate increases
with increasing number of electrodes and the classification
errors occur predominantly between adjacent electrodes, ii)
by inserting the electrode array deeper into the cochlea, more
electrode locations can be distinguished and the electrodes for
which most errors occur are determined by the distance and
spiral twirling angle between adjacent electrodes.

I. INTRODUCTION

A cochlear implant [1] is an electronic biomedical device
designed to bypass damaged inner hair cells by direct elec-
trical stimulation of auditory nerve fibers. Modern cochlear
implants consist of up to 22 electrodes to replace the function
of over 3000 inner hair cells. Although many cochlear
implant recipients perceive speech well in quiet conditions,
their ability to understand speech in noisy environments and
to appreciate music is still limited. Increasing the number of
electrodes does not improve hearing performance, and this
is thought to be mainly due to current spread, which causes
electrodes that are close together to stimulate overlapping
populations of auditory nerve fibers [2]. However, recent
research [3] suggests that more than 100 individual spectral
channels may be perceived by cochlear implant users via
current steering. In this paper, we aim to investigate how
many electrode locations can be distinguished using a chan-
nel model of cochlear implants.
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Electrode place discrimination is equivalent to a multi-
class classification problem. We address this problem by
adapting previous studies that established a modeling frame-
work for predicting the optimal number of electrodes, as
well as finding the optimal locations and usage probabilities
of electrodes from an information theoretic perspective [4]—
[7]. In these works, the interface between the electrode array
and the auditory nerve is conceptualized as a communication
channel for a discrete memoryless source, which enables
the calculation of the mutual information between a channel
input random variable (choice of electrodes) and a channel
output random variable (a function of the active nerve fibers
in response to an electrode choice). Based on the assumption
that an increased mutual information leads to increased
electrode place discrimination [8], the information theoretic
models predicts the “optimal” number of electrodes as that
which achieves the maximum mutual information [4], [5].

However, the mutual information only represents the sta-
tistical correlations between the outcomes of channel inputs
and outputs in the model, whereas to quantify the perfor-
mance of place discrimination, the channel output random
variables need to be processed to an actual decision. That is,
the decision on which electrode is stimulated in response to
an activation pattern in the fibers.

The goals of this paper, therefore, are to investigate three
important and clinically relevant problems: i) whether more
electrode locations can be distinguished by inserting cochlear
implant electrode arrays deeper into the cochlea, ii) the
locations along the electrode array where most errors occur,
and iii) classification error rates for each electrode loca-
tion. To achieve these goals, we first update two individual
components of the modeling framework [4] (see Sec. I-B);
namely we use a realistic spiral geometry model, and we
choose maximum current levels tailored individually for each
electrode. Then instead of calculating mutual information, we
apply a discriminative classifier (a recently developed variant
of an artificial neural network, known as an extreme learning
machine (ELM) [9]) to simulations of the population activity
of the auditory nerve in the model, in order to predict the
location of the stimulating electrode. The premise is that
if an engineered classifier cannot determine the cause of a
particular pattern, then neither will the real biological system.

Before proceeding, the following subsections describe the
structure of the modeling framework in [4] and the updates
that we made to the modeling framework in this paper.

A. Overview of the channel model of cochlear implants

The model of [4] has five components:
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1) geometry model of fiber and electrode locations;
2) stochastic action potential generation model in individ-
ual auditory nerve fibers;
3) electrode current spread model;
4) dependence of loudness perception model on overall
auditory nerve activity;
5) information theoretic model of place discrimination.
It is straightforward to introduce improvements or replace-
ments to any of the individual components in this modeling
framework while maintaining the core concepts of the mod-
eling framework [4], [5].

B. Updates to the modeling framework

In this paper, we maintain components 2 and 3 (from [2]).
The following changes are made for components 1, 4 and 5:

o For component 1, we replace the linear electrode-
to-fiber geometry model with a helical geometry
model [10] since the actual human cochlea and the im-
planted electrode array form a three-dimensional spiral.

e For component 4, instead of choosing the same cur-
rent level for each electrode [4], we choose different
maximum current levels for each electrode such that
stimulation of each electrode causes approximately 10%
of the auditory nerve fibers to generate action potentials.

o For component 5, we keep the general concept of
the electrode location discrimination model in [4]. The
channel input is defined as the locations of electrodes
Xe (Xe = @5, = 1,2,...,M), where M is the
number of electrodes in the array. The channel output
is defined as a vector of outcomes for a total of N
auditory nerve fibers (the fiber spiking pattern), which is
denoted as (Y;);=12,. ~. A Bernoulli random variable
Y; € {0,1} denotes whether or not fiber 7 produces an
action potential in response to electrode current C'y ;.

For more detail of each individual component of the
modeling framework, see [4], [5], and [10].

In this paper, an activation pattern Y is processed to
make a decision on which electrode is stimulated that caused
this pattern. To make this decision, each example pattern,
Y, is assigned to one of the M electrodes, which can be
referred to as a multi-class classification problem [11]. The
performance of place discrimination is then estimated by
calculating the correct classification rates by simulating many
repeated stimulations of each electrode using the model.

II. AN ELM CLASSIFIER FOR ELECTRODE PLACE
DISCRIMINATION

We adapt the ELM method of [9] to solve the electrode
place discrimination problem. Specifically, we use a multi-
class classifier with multi-outputs in this paper; i.e., M—class
classifier with M output nodes.

Two phases are involved in the classification of fiber
activation samples: 1) training an ELM classifier and 2)
testing the classification performance using the trained ELM
classifier. Before we present the training phase and testing
phase, we introduce some parameters that define the dimen-
sions of the classifier.

o The dimension of each training vector (equal to the
number of fibers) is defined as V.

o The number of hidden layer neurons is defined as L.

« The number of distinct labels of training vectors (equal
to the number of electrodes) is defined as M.

We also define two matrices in order to map the fiber
activation samples (the input vectors) into the indices of
electrodes (the prediction vectors).

o The input weight matrix Wy, (of size L x N) maps
the data from the N-dimensional input space to the L-
dimensional hidden-layer feature space.

e The output weight matrix Wy, (of size M x L)
maps the L-dimensional hidden-layer activations to M-
dimensional predication vectors.

In our ELM classifier, the input weights are randomly chosen
from uniform distribution on the interval [—1, 1].

A. Training an ELM classifier

Let the training vectors be T = [ti,...,t;,...,tp],
where P; is the number of training vectors and t; (of
size N x 1) is a single training vector which represents an
activation pattern Y as described in Sec. I-B. We denote
V as the labels of each training sample. For simplicity of
calculation, we define V = [vy,...,v,,...,vp/], where v,
has size M x 1. In v;, only one element is a 1 corresponding
to the label of training vector t; and all other elements are
0. The label of t; represents which particular electrode is
stimulated to produce the training points in t;.

We define Z as the prediction vectors

Z = Woutf(winT)a (1)

where W;, T is the hidden layer neuron activations, and
f(-) is the termwise (L x P; — L x P;) neuron activation
function. In this paper, the absolute value function is used for
the neuron activations. Note that, other nonlinear activation
functions may also be used.

By training the classifier, we seek to find W, that
minimizes the mean square error between V and Z.

B. Classification using the trained ELM classifier

We define testing vectors as T' = [t},...,t,... ,t} ],
where P, is the number of testing vectors and t} (of size
N x 1) represents a single test vector.

Then the prediction vectors for the testing phase is defined
as

Z/ = Woutf(winTl)v (2)

where W ¢ is obtained in the training phase. The classifica-
tion decision for testing vector ¢ is made from Z’ by choosing
the maximum element in its ¢—th column. This corresponds
to making a decision of which electrode generated the fiber
spiking pattern that generated t/.
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III. RESULTS

We now quantify the classification performance by inves-
tigating the correct classification rates for different spiral
angles of electrode array in Sec. III-A and where the errors
happen along the array in Sec. III-B.

Before presenting the results, we choose a set of param-
eters for the cochlear implant model as an example case.
The distance between the electrode array and the auditory
nerve fibers is 7 = 2 mm. We use N = 3000 as the
number of surviving auditory nerve fibers, and fibers have
identical parameters as in [4] and are nonuniformly located
along the cochlea according to a model of the actual location
distribution. The electrodes are uniformly spaced along the
unwrapped length of the array, and the electrode stimulation
strategy is bipolar stimulation.

A. Percentage of correct classification

The total spiral angle of a human cochlea is approximately
5m radians. We choose two example spiral angles of the
electrode array, a = {2m,3n}, since the electrode array
are not usually implanted very deep into the cochlea. The
number of hidden-layer neurons is chosen as L = 1500,
since this achieves the approximately optimal classification
performance in our model. We generate 400 sets of fiber
activation patterns per electrode. Of these, 90% are used as
training data, the rest are used for testing.
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Fig. 1. Comparison of the percentage of correct classification versus the
number of electrodes, M, for two cases of the spiral angles of electrode
array, o = {27, 3w},

Fig. 1 compares the percentage of correct classification
versus the number of electrodes for two cases of the spiral
angles of electrode array, o« = {27, 37}. The correct classi-
fication rates decrease with increasing numbers of electrode
for both insertion depths. Specifically, the gap of correct
classification rates between the o = 27 case and the o = 37
case increases with increasing number of electrodes.

We notice that the unwrapped length of the electrode array
for the o = 27 model is about 9.5 mm shorter than for the
a = 37w model (for calculation details, see [10]). In other
words, the distance between adjacent electrodes d for o = 27
is approximately 9.5/M mm shorter than for « = 37. We
now investigate how the distance between adjacent electrodes
impacts on the classification performance.

Fig. 2 compares the percentage of correct classification
versus the distance between adjacent electrodes. We observe
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Fig. 2. Comparison of the percentage of correct classification versus the
distance between each adjacent electrode, d, for two cases of the spiral
angles of electrode array, o = {27, 37}.

that, compared to the @ = 37 model, the correct classifi-
cation rate for the @ = 37 model decreases more slowly
with decreasing d. We note that, for a fixed d, the a = 37
array always has more electrodes than the @ = 27 array.
We discuss these results in Sec. IV after visualizing the
classification error rates for each electrode in Sec. III-B.

B. Classification errors for each electrode location

Fig. 3 shows the classification error rates of each electrode
along the array. Row A shows the case of a = 2w, row
B shows the case of a« = 3m. In each row, the columns
from the left to right represent the number of electrodes,
M = {40,70, 100}, respectively. The horizontal axis of each
matrix indicates the index of the actual stimulated electrode,
m, the vertical axis indicates the index of the electrode that
is chosen by the ELM classifier, . The matrix element at
position (m,m’) gives the estimated probability that elec-
trode m is predicted as electrode m’. To clearly present the
error probabilities, the probabilities that elements at position
m = m/ (correct classification) are not shown in this figure.
In this paper, we number the electrodes from the basal end
to the apical end in sequence.

For both o = 27 and o = 3, the errors increase with
increasing numbers of electrodes. Incorrect classifications
happens most frequently between adjacent electrodes. For
the &« = 37 model, the errors are closer to the basal end
of the array than a = 2, and the error probabilities of the
basal electrodes are higher than the apical electrodes.

IV. DISCUSSION

A. Does a longer electrode array lead to better electrode
place discrimination?

The a@ = 37 model always achieves better classification
performance than the & = 27 model except where the correct
classification rate is approximately 100%. As mentioned in
Sec. ITI-A, the o = 3 electrode array is longer than the o =
27 array. Thus, with the same number of electrodes, current
spread affects more adjacent electrodes for the o = 27 case
since the distance between them is smaller.

We then investigated how the classification performance
changed versus d. Fig. 2 indicates that the longer electrode
array (o = 3m) helps with distinguishing more electrode
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Confusion matrices that show the classification error rates of each electrode along the array. Row A shows the case o = 27, row B shows the

case « = 3. In each row, the columns from the left to right represent the number of electrodes, M = {40, 70, 100}, respectively. The horizontal axis
of each matrix indicates the index of the actual stimulated electrode, m, the vertical axis indicates the index of the electrode that is chosen by the ELM
classifier, m’. The matrix element at position (m,m’) gives the probability that electrode m is predicted as electrode m/'.

locations. We observe in Fig. 3 that by inserting electrodes
into the second turn of the cochlea, the electrodes located
at the second turn stimulate less overlapping populations
of fibers compared with electrodes on the first turn. We
conclude this is the reason that the @ = 37 array has better
place discrimination in the model.

B. Where do the classification errors occur?

One phenomenon observed in Fig. 3 is that for both cases
of electrode spiral angles, all errors happen between adjacent
electrodes. Since current spread causes adjacent electrodes
to stimulate the most overlapping populations of fibers, it is
not surprising that most errors are those where the chosen
electrode is the one adjacent to the actual one.

Another phenomenon is that for the o = 37 array, the
errors are predominantly at the basal end of the array. We
recall that the electrodes are assumed uniformly located
along the unwrapped length of the array. In this case, the
twirling angle between adjacent electrodes, denoted as 6,
gradually increases from the basal electrodes to the apical
electrodes. This is because the radius decreases from the first
turn to the second turn of the array. We have verified that
if the electrode locations are determined instead by equally
spaced twirling angles, the most errors instead occur closer
to the apical end of the array (results not shown).

In summary, in this paper, we investigated how the classi-
fication performance changes with the number of electrodes
and the distance between electrodes for different electrode
array insertion depth. We inferred that inserting the elec-
trode array deeper into the cochlea could help with better
electrode place discrimination performance. We also found
that where the errors happen along the electrode array is
affected not only by the distance between electrodes but also
the twirling angle between electrodes. Some valuable future
work could be done to provide more precise estimation of

the classification performance by i) applying a biologically
plausible single neuron model in the classifier, ii) improving
or changing individual components in the cochlear implants
model, and iii) undertaking experimental studies to validate

the model’s predictions.
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