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Abstract—This paper presents a general framework for the
doubly fed induction generator connected to a complex power
system in order to facilitate the dynamic estimation of its states
using noisy PMU measurements. State estimation considering
the whole power system with the occurrence of electric faults
is performed using the Unscented Kalman Filter (UKF) with a
bad data detection scheme. Such a state estimation scheme for a
DFIG is important because not all dynamic states of a DFIG are
easily measurable. Furthermore, the proposed state estimation
technique is decentralized and the network topology of the entire
power system is taken into consideration in the estimation process.
In order to enhance the error tolerance and self-correction of the
power system, bad data detection technique is implemented. A
performance comparison with Extended Kalman Filter (EKF) is
also discussed.

Index Terms—Bad data detection, doubly fed induction gener-
ator (DFIG), EKF, PMU, state estimation, UKF.

I. INTRODUCTION

W ITH the depletion of fossil fuel reservoir, wind power
as a clean and renewable energy source has attracted

a lot of attention in recent decades. DFIGs are now one of the
most commonly used wind power generators in the industry [1].
Mathematical modelling and various control strategies are re-
ported in [2]–[4]. In the power electronics field, a great contri-
bution has been made to the converters and inverters used in
DFIG [5]. Further studies on DFIG such as eigenvalue sensi-
tivity analysis and fault ride through can be found in [6], [7].
Most recent studies that have been done in control design of
DFIG and Power System Stabilizer (PSS) application to DFIG
are presented in [8], [9]. Nevertheless, there has been no re-
ported work on the dynamic state estimation of DFIG, which is
the subject of this paper. UKF and EKF estimation schemes to
dynamically estimate the states of a DFIG connected to a com-
plex power system using PMU measurements are presented in
this paper.
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State estimation for complex power systems is a piece of
indispensable work in the investigation of power systems be-
cause of the need of controller designs and the unavailability of
some states. The dynamic state estimation of synchronous gen-
erators are widely reported in the literature, see [10]–[13] and
references therein. Those reported estimation schemes for syn-
chronous generators are primarily based on Kalman filter tech-
niques. Likewise, on a similar front, we report UKF and EKF
based techniques for estimating the dynamic states of DFIG.
The dynamic state estimation of DFIG is challenging due to
the high nonlinearity of DFIG and the wide range of operating
points [14]. Moreover, the equivalent circuit of the DFIG is
more complicated than that of the synchronous generator due
to the doubly fed connection via the rotor side and the grid side
controllers. The estimation must be performed considering the
overall power system network, which leads to the result that any
change in the network will have an impact on the performance of
DFIG and vice versa. The proposed estimation scheme in this
paper, however, is decentralized and can be obtained by only
observing and processing local data. With the increased popu-
larity of UKF and EKF as two main methods to estimate states
and their mature applicability, using them to estimate states in
DFIG is feasible and practicable. A good summary of UKF esti-
mating nonlinear states is shown in [15]. EKF is commonly used
to estimate nonlinear system with linearized system parameters
and has already been considered as a standard theory of state es-
timations and navigation systems [16]. The main drawback of
EKF, nonetheless, is the fact that when the system is highly non-
linear, it will produce unsatisfactory results and consequently,
UKF shall generate a better result than EKF when estimating
dynamic states of nonlinear systems. In this paper, UKF will be
used as a main method for state estimation while EKF will be
implemented as a comparison method.
PhasorMeasurement Units (PMUs) have witnessed its signif-

icant developments in recent years and are now widely used in
power distribution and power system infrastructure [17]. PMUs
can provide and send measurement data at a sampling rate of
48 samples per cycle (2880 samples/s for 60 Hz systems) [18],
which displays a significant advantage in dealing with nonlinear
state estimation as data collected at such fast rate will accurately
reflect and effectively track the change trend of nonlinear states.
Bad data detection will also be incorporated into UKF to elimi-
nate unwanted data.
In this paper, we consider the mathematical model of a DFIG

and formulate it in a manner that can be incorporated with UKF
and EKF filtering algorithms. In particular, the dynamics of
the electrical network is considered to respond a lot faster than
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Fig. 1. DFIG connected to the IEEE 39-bus, 10-gen test system with dynamic
state estimator.

the dynamics of the rotating machine, i.e., the induction gen-
erator, during any interference of the network, which makes
PMU voltage and current magnitude and phase angle measure-
ments as inputs/outputs that drive the dynamical equations of
the DFIG. This can also facilitate the decentralized implemen-
tation of the UKF and EKF algorithms. These estimates of the
dynamic states of the DFIG can be utilized to improve the per-
formance of DFIG in power systems, especially for the fault
ride through study where DFIG internal sates are involved in
the controller design. The dynamic state estimation can realize
the acquisition of such internal states, which are otherwise very
difficult to obtain.
The rest of the paper is organized as follows. A comprehen-

sive mathematical model for DFIG and its implementation in
a complex power system is presented in Section II. UKF and
EKF algorithms are presented in Section III. In Section IV, a
case study of a DFIG connected to the IEEE 39-bus, 10-gener-
ator test system is investigated with bad data detection technique
and its implementation in the power system. Finally, a conclu-
sion will be drawn in Section V.

II. MATHEMATICAL MODEL FOR DFIG
The doubly fed induction generator model can be divided

into 5 parts: A) wind turbine (also called drive train), B) asyn-
chronous generator (also called induction generator), C) rotor
side controller, D) grid side controller, and E) DC link. Please
refer to Fig. 1.
Three reference frames are used in this model: (i) infinity ref-

erence d-q frame (or swing bus in real a power system), (ii)
stator voltage d-q reference frame, and (iii) mutual flux d-q ref-
erence frame, the latter two of which will appear with super-
scripts, and respectively. All constants and parameters used
in the model are given in the Appendix A.

A. Wind Turbine
The mechanical torque and the mechanical power

produced by the wind are related to wind speed and rotor
speed as follows [19],

(1)

(2)

where is wind speed in per unit, and are the
nominal mechanical and electrical power respectively, is the
maximum fraction of mechanical energy that can be extracted
from wind energy, and is the mechanical power coefficient,
which can be obtained by the following equations,

(3)

(4)

(5)

where is the nominal mechanical power coefficient,
is the wind turbine blade pitch angle, is the nominal tip
speed ratio and , are turbine constants. Sign
convention is adopted such that when DFIG is generating power
to grid (i.e., generator mode), is negative, whereas when it is
consuming power (i.e., motor mode), is positive. In order to
keep rotor speed in a reasonable range, a proportional con-
troller for pitch angle is implemented such that the pitch angle
, and can be calculated as,

if
otherwise

where is the maximum angular speed.

B. Asynchronous Generator
Asynchronous generator, also known as induction generator,

is analyzed and calculated in mechanical and electrical parts.
1) Mechanical: The relationship between rotor speed ,

mechanical torque , and electrical torque can be shown
by the following differential equation [1],

(6)

where electrical torque can be expressed with stator flux (
and ) and stator current ( and ) as

(7)

where constant is the generator inertia and is the friction
factor.
2) Electrical: The equivalent circuit of electrical part of

asynchronous generator is shown in Fig. 2 with relevant pa-
rameters. The following differential equations describe the
dynamics of the rotor flux, and [6],

(8)
(9)

where is the base angular
speed and is the synchronous angular speed in the
synchronous frame. Likewise, the dynamics of the stator flux,

and , can be described as follows,

(10)
(11)
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Disregarding the transience of stator flux, the following equa-
tions can be obtained,

(12)
(13)

Rotor current and , and stator current and can
be expressed with additional variables, stator-rotor mutual flux

and as follows,

(14)

(15)

(16)

(17)

Stator-rotor mutual flux can be expressed as,

(18)

(19)

where constants and are the d-q mutual flux factors.

C. Grid Side Controller

Grid Side Control (GSC) scheme, performed in stator voltage
reference frame is used to regulate the voltage of DC-link capac-
itor and the reactive power injected into the GSC.
Stator voltage (i.e., terminal voltage) and grid current

can be transformed to stator voltage reference frame with
the following equations [20],

(20)
(21)

and d-q components of ( and ) and ( and )
are computed accordingly. A PI controller is used to generate

according to the following equations,

(22)
(23)

where is an intermediate variable. We assign for
GSC zero reactive power injection. In the current regulator, the
controlled grid side voltage can be calculated using following
equations,

(24)
(25)
(26)
(27)
(28)
(29)

where , , and are intermediate variables. Then grid
voltage in infinity synchronous reference frame, shown
with is as follows,

(30)

D. Rotor Side Controller

Rotor Side Controller (RSC), performed in mutual flux ref-
erence frame is to regulate turbine output active power and
the reactive power which can be measured at the terminal.
The d-q frame components of mutual flux in stator voltage

reference frame are computed as [7],

(31)
(32)

Rotor current and stator current are transformed to
mutual flux reference frame as and given below,

(33)
(34)

Firstly, a power regulator is utilized to set temporary q-compo-
nent of the rotor reference current , where the input is
the difference of reference power and the summation of
terminal measured power and power loss , the latter
of which includes friction mechanical loss, stator heat loss, rotor
heat loss and grid coupling inductor loss. , and
are obtained according to the following equations,

(35)
(36)

and

(37)

where

otherwise

The current with being the intermediate variable, is
computed by,

(38)
(39)

Then a reactive power regulator is used to generate temporary
d-component of the rotor reference current with the fol-
lowing equations,

(40)
(41)
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Fig. 2. Equivalent circuit of induction generator.

Fig. 3. 40-bus, 11-generator power system.

where is an intermediate variable and

(42)
(43)

After acquiring the temporary values and , rotor
reference current and are expressed as

(44)

(45)

where . Rotor side cur-
rent regulator, similar to stator side is also used to generate
controlled rotor voltage and , which are computed as
follows,

(46)
(47)
(48)
(49)
(50)
(51)

where , , and are intermediate variables and con-
stant . Rotor voltage , in infinity syn-
chronous frame is expressed with as follows,

(52)

E. DC Link
After obtaining grid voltage and rotor voltage , i.e.,

, grid side current can easily be acquired by [4]

(53)

(54)

Grid side power and rotor side power and can be calcu-
lated by

(55)
(56)

With energy conservation equation, the power stored in the
DC-link capacitor can be written as,

(57)

hence the following differential equation holds,

(58)

Differential (6), (8), (9), (58), (22), (24), (25), (38), (40), (46),
(47) together with algebraic (12), (13), (14), (15), (16), (17),
(53) and (54) form the set of 19 dynamic and algebraic equa-
tions for the doubly fed induction generator with dynamic state
variable vector ,
algebraic variable vector ,
pseudo-input vector , and output vector .
Here we consider a modification to IEEE 39-bus, 10-gen-

erator test system with DFIG wind farm connected to bus 40,
which is then connected to bus 19 through a transformer. The
modified power system shown in Fig. 3 is now comprised of 40
buses and 11 generators.
The dynamic behavior of DFIG, which is connected to an

IEEE 39-bus, 10-generator test system, can be expressed in the
following compact form,

(59)
(60)
(61)

where is the DFIG dynamic state variable vector, con-
sists of the DFIG algebraic variables, is the DFIG pseudo-
input vector and represents the total current flowing into
bus 40. Both the pseudo-input and output of the DFIG are mea-
sured using PMUs, placed at bus 40, see Fig. 1. Similarly, the
dynamic equations for the rest generators G1 to G10 can also
be expressed in the same compact form, so all the 11 generators
can be described as,

(62)
(63)
(64)

for , where state vector consists of dynamic
states of each generator, is the algebraic variable vector of
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each generator, is the pseudo-input vector comprised of ter-
minal voltage and phase angle of all generator buses and
, the output vector represents the total current flowing

into each respective generator bus bar and , and are
known functions. For equations describing the dynamics of 10
generators in the IEEE 39 bus, 10-generator test system, see
[11]. Substituting from (63) into (62) and (64), the previous
compact form can be rewritten as,

(65)
(66)

for . The initial condition of this dynamical
system can be acquired with (65) and (66). Assuming the system
is initially operating at steady state, (65) and (66) become

(67)
(68)

Solving (67) and (68) will issue the initial condition of the dy-
namical system for the simulation. Equations (65) and (66) to-
gether with the following power balance equation describe the
whole power system [21],

(69)

where is the admittance of the line connecting bus
and , and are active power and reactive power
consumed by the loads connected to busbar at time . As only
the dynamic states of DFIG are to be estimated, i.e., , we
notate as , as , as , as , as , as

and as . So the discretized system with noisy
PMU measurements can be expressed by

(70)

where diacritic sign denotes a measurement of affected
by noise and is the controlled variable
vector of GSC and RSC. Voltage and current measurement noise

and respectively, are distributed normally with zero
mean and covariance and as follows,

(71)
(72)

and

(73)

In the DFIG dynamical system, the voltage is considered as
the input and the current is the output. In the dynamic state esti-
mator, however, voltage and current both are inputs and the es-
timated states are the outputs. The DFIG dynamical equations
are formulated in this manner so that the output of the system,
the current, can be acquired by both PMU direct measurement
and through the calculation by estimated states. The error in the

predicted output and measured output is the innovation process
that drives the estimator.

III. ESTIMATION ALGORITHMS

A. Unscented Kalman Filter
The unscented transformation (UT) is a method to estimate

statistics of a random variable subjected to a given nonlinear
transformation [13]. Let us assume that is a dimensional
random variable distributed normally with mean and covari-
ance . If undergoes a nonlinear transformation ,
then UT can provide the estimation of the mean and covari-
ance of . A set of points called sigma points
with mean and covariance are chosen to estimate the
mean and covariance of the transformed points using
the following equations [22],

(74)

where is the th row or column of the matrix
square root of . Also is a scaling
parameter where is a factor which specifies the spread of the
sigma points, and is the second scaling parameter. Fur-
thermore, mean and covariance of are approximated based on
the following corresponding weights,

(75)

(76)

where is a factor to incorporate prior knowledge of the distri-
bution of , e.g., for normal distributions. The mean and
covariance of the random variable can be calculated using the
following equations,

(77)

(78)

(79)

Now consider the decoupled dynamic of the iteration (70).
As discussed before, PMU measurement noise is assumed
to have a normal distribution with zero mean. If we assume
the covariances of measurement noise in pseudo inputs are
constant then the state vector and measurement noise

can be considered as a new augmented state vector,
, where is the augmented

state vector. Predicted augmented state vector and its
covariance can be obtained as follows,

(80)

(81)
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Using the unscented transformation, state estimation of DFIG
can be implemented using the following filtering algorithm,

Step 0:
• Set and let , .
• Select initial value of the state vector and select
it as .

• Augment initial value of the state vector
with PMU measurement noise mean, i.e.,

.
• Initiate covariance of the augmented state vector

as .
• Set .

Step 1: Time Update,
• Consider and in (74).
• Generate sigma points according to (74),
i.e., .

• Associate weights according to (75) and (76), i.e.,

• Calculate transferred points according to (77), i.e.,
.

• Calculate mean and covariance of the
transferred points , according to (78) and (79) with
replaced by and replaced by .

Step 2: Measurement Update,
• Calculate measurement update based on the transferred
sigma points obtained from Step 1, i.e.,

.
• Calculate mean according to (78) with
• Calculate covariance of , , according to (79),
i.e.,

• Calculate cross-covariance as,

Step 3: Filtering,
• Calculate filter gain as, .
• Update predicted states based on PMU measurement
as, .

• Calculate covariance as,
.

Step 4:
• Reset to .

• Reset to .
• Increment and goto Step 1.

At the end of each filtering algorithm iteration provides
on-line estimate of generator augmented state vector . Es-
timation of the state vector can be extracted from the aug-
mented state vector according to (80).

B. Extended Kalman Filter
Introducing covariance matrix ,

...
. . .

...
... (82)

EKF algorithm is explained in brief as follows,

Step 0: Initialization. See UKF algorithm Step 0.
Step 1:

• Predicted state estimation
,

• Predicted covariance estimation
, where Jacobian Matrix is

(83)

Step 2:
• Innovation Covariance ,
• Kalman gain , where
Jacobian Matrix is computed as follows,

(84)

Step 3:
• Update state estimation

,
• Update covariance estimation

.
Step 4: Reset and and perform next iteration.

IV. NUMERICAL RESULTS

A. Case Study
The 40-bus, 11-generator test system considered in this paper

consists of one DFIG wind farm and 10 synchronous gener-
ators. These 10 synchronous generators are in three separate
areas, and in each area one generator has a type I, IEEE ST1A
AVR with PSS excitation system and all other generators are
equipped with excitation systems of type II, IEEE DC1A AVR
without PSS. Speed-governing systems of the 10 generators are
categorized into two main types: (i) mechanical-hydraulic and
(ii) electro-hydraulic with/without steam feedback. Hydro and
steam turbines are also considered in the generation units. All
the implemented steam turbines are tandem-compound, double
or single reheat type. For generator and speed-governing equa-
tions, see [11] and [23]. The simulation is conducted in time
domain and PMU measured values and are sampled
at 100 Hz. As shown in Fig. 1, PMUs measure the magnitudes
and phase angles of voltage and current of bus 40.
and are the RMS phase voltage and current in per unit
system at bus 40. The measured voltage and current are as-
sumed to have white noises in both magnitudes and phase an-
gles. Thus, and are the noisy PMU measure-
ments of voltage and current of bus 40. The dynamical system
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Fig. 4. Dynamic state estimation for case study.

described in the form (65) and (66) consists of measurable in-
puts and outputs-voltage and current. There are no unknown in-
puts or unknown outputs in the dynamical equations. The mea-
surements are corrupted by white noises, which is the reason for
using UKF and EKF to obtain the state estimates.
The power system operates for 15 seconds with a constant

wind speed. During the first 1.5 seconds, the whole power
system works at steady state and a flat curve is expected. At
1.5 second, an electric fault occurs and the transmission line
between bus 23 and bus 24 is disconnected which remains
untouched throughout the rest of simulation. Both UKF and
EKF continuously estimate the dynamic states of the DFIG.
Fig. 4 presents a comparison of the estimated states from UKF
and EKF. It is easy to see that EKF displays a relatively poorer
performance than UKF. For state estimation of and ,
UKF and EKF produce a pair of comparable result but EKF
curve contains more fluctuations, which indicates that EKF
method is more susceptible to noises than UKF. As for the
estimation of , though it does not change noticeably in
magnitude during the whole process (actually stays at 1.20),
the curve has fast but tiny changes over time. The result of both
methods, however, are within the acceptable range, and the
discrepancies of them to theoretical result fall in the range of

. The superiority of UKF becomes more evident
in the estimation of the most nonlinear state . The EKF
estimate of error is nearly unacceptable as can be seen in
Fig. 4.

EKF is mostly used to deal with quasi-linear systems by
simply linearizing the state space and substituting the lin-
earized functions back to linear filters [24]. In other words,
EKF propagates the mean and covariance in a linear behavior,
which leads to inevitable inaccuracy in state estimation in
highly nonlinear state space equations. But UKF makes use of
unscented transformation, a deterministic sampling technique
to pick a minimum set of sigma points around the mean [25],
which explains why the nonlinear behavior of the DFIG is
better captured by the UKF algorithm.

B. Bad Data Detection
PMU measurements may, in additional to noises, also have

gross errors that deviate significantly from the real data. These
measurements, if used, will generate unacceptable discrepan-
cies to estimated data. Therefore, bad data must be detected and
eliminated from PMU measurement pool. Before performing
this technique, the concept of normalized innovation ratio [10]
is introduced as follows,

(85)

and indicate the deviation ratios of predicted measure-
ments to actual PMU output measurement. When the absolute
value of ratios exceed certain thresholds and respec-
tively, bad data occur. And the source of bad data can be either
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or both of pseudo-input vector and output measurement
vector . The modified UKF algorithm with bad data de-
tection methodology is shown as follows,

Step 1: Perform first two steps of UKF algorithm.
Step 2: Acquire normalized innovation ratios according to

(85).
Step 3:

• (1) If and , go to Step 4.
• (2) If and ,

and go to Step 4.
• (3) If and ,

and go to Step 4.
• (4) If and , store current
vector and use the latest uncorrupted input
vector to acquire a new set of and

.
• (5) If and , discard
stored and replaced it with . Go to
Step 4.

• (6) If and ,
, discard stored and replace it

with . Go to Step 4.
• (7) If and ,

, discard stored and replace it
with . Go to Step 4.

• (8) If and , then
and , continue to the

next step.
• (9) Use stored to acquire a new set of
and with the output obtained in Step 3.8.

• (10) If and , keep
and go to Step 4.

• (11) If and , abandon
and replace it with . Go to Step 4.

Step 4: Perform last two steps of UKF algorithm.

Bad data can exist in pseudo-input vector or/and output
vector. Faulty data in either or both of pseudo-input elements
will affect and significantly, whereas bad data present
in output measurement only affects its corresponding normal-
ized innovation ratio, i.e., corrupted only affects . If
there are no bad data, the detection scheme will stop at Step 3.1
and continue to Step 4. If bad data are in either of the output
measurement elements , it is to be detected in Step 3.2 or
Step 3.3, and then faulty output measurement is discarded and
replaced with the predicted output. If bad data are in either or
both of pseudo-input items and output measurement is
robust, then Step 3.4 will be triggered and detection stops and
returns at Step 3.5. This means is corrupted and so

replaces it, and continue onto the next iteration. If bad
data exist in (i) both pseudo-input and output measurement
vectors with one or two elements in both of them infected or
(ii) both of output measurement elements are corrupted with
reliable pseudo-input vector, Step 3.4 will be triggered but

Fig. 5. , with bad data.

the provenance of faulty data are unclear. At Step 3.4, we
tentatively postulate there are bad data in pseudo-input vector,
so current pseudo-input vector is stored and
is used to generate a new, reliable predicted output vector.
Step 3.6 or Step 3.7, if activated, indicates that bad data exist
in pseudo-input and one of the measured output elements.
Therefore, this pseudo-input vector sample is abandoned and
replaced by and faulty measured output element is
eliminated and renewed with predicted output. If Step 3.8 is
true, it can be inferred that bad data exist in both items of output
measurement but the accuracy of pseudo-input is unknown.
Proceed to next step to make further judgment. If Step 3.10
is satisfied there is no bad data in pseudo-input vector and

is preserved for the next iteration. Lastly, if Step 3.11 is
triggered, it indicates the presence of bad data dwells in current
pseudo-input sample and hence, is ditched and
takes its place. It should be noted that there is no necessity to
tell which one of pseudo-input elements is corrupted as when
either or both of them are faulty, the predicted output is highly
erroneous and thus the whole vector is discarded.
At , a bad datum is added to one of pseudo-input

element and no faulty data appear in output measurement.
From Fig. 5 it is clear that and shoot out significantly
above the threshold and Step 3.4 and Step 3.5 are activated. At

, a bad datum is forged in output measurement item
and pseudo-input vector is trustworthy. It can be seen that
becomes boundless and only Step 3.3 is triggered. At ,
bad data are made existent in both items of output measurement
and . It is evident in the figure that both normalized inno-

vation ratios are abnormal and Step 3.4, Step 3.8, Step 3.9 and
Step 3.10 are invoked as expected. Finally, at , all el-
ements in both pseudo-input and output measurement vectors
are adulterated with bad data. Fig. 5 shows the phenomenal ab-
normality in both and bad data create. In the bad data
detection scheme, Step 3.4, Step 3.8, Step 3.9 and Step 3.11 are
triggered. With bad data detection and elimination incorporated
in UKF algorithm, the simulation result for case 1 with bad data
is identical to the result obtained without bad data.
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TABLE I
DFIG CONSTANTS AND PARAMETERS

V. CONCLUSION

In this paper, we have presented a general framework for the
doubly fed induction generator in order to facilitate the dynamic
estimation of the states of DFIG. The proposed method is de-
centralized and performed with UKF and EKF algorithms using
noisy PMU measurements. Comparison of UKF and EKF esti-
mates shows that UKF can provide a better dynamic state es-
timation of DFIG. The estimation is based on a holistic level
where the whole network topology is considered. Bad data de-
tection technique is investigated in depth and it enhances the ca-
pacity of error tolerance and self-correction of power systems.
The success of the theoretical understanding and simulation of
estimating unmeasurable states in a power system lays us a solid
foundation on which control scheme may be designed to rein-
force the stability of a DFIG power system.

APPENDIX

Table I lists the DFIG constants and parameters.
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